题目内容
【题目】设m,n是两条不同的直线,α,β,γ是三个不同的平面.在下列命题中,正确的是(写出所有正确命题的序号)
①若m∥n,n∥α,则m∥α或mα;
②若m∥α,n∥α,mβ,nβ,则α∥β;
③若α⊥γ,β⊥γ,则α∥β;
④若α∥β,β∥γ,m⊥α,则m⊥γ
【答案】①④
【解析】解:①∵若m∥α,且m∥n,分两种情况:n在α内或不在,则m∥α或mα故正确;
②若m∥α,n∥α,mβ,nβ,m,n相交,则α∥β,故不正确;
③若α⊥γ,β⊥γ,则α∥β,此命题不正确,因为垂直于同一平面的两个平面可能平行、相交,不能确定两平面之间是平行关系,故不正确;
④由平行的传递性知若α∥β,β∥γ,则γ∥α,因为m⊥α,所以m⊥γ,故正确.
所以答案是:①④.
【考点精析】本题主要考查了空间中直线与平面之间的位置关系的相关知识点,需要掌握直线在平面内—有无数个公共点;直线与平面相交—有且只有一个公共点;直线在平面平行—没有公共点才能正确解答此题.
练习册系列答案
相关题目
【题目】某部门为了了解青年人喜欢户外运动是否与性别有关,运用2×2列联表进行独立性检验,经计算K2=7.069,则所得到的统计学结论为:有( )把握认为“喜欢户外运动与性别有关”. 附:(独立性检验临界值表)
P(K2≥k0) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.841 | 5.024 | 6.636 | 7.879 | 10.828 |
A.0.1%
B.1%
C.99%
D.99.9%