题目内容

【题目】已知公差不为零的等差数列满足,且成等比数列.

(1)求数列的通项公式;

(2)设,求数列的前项和.

【答案】(1) ;(2) .

【解析】试题分析:(1)设等差数列的公差为成等比数列,可得,化简得,又,所以,从而.;(2)结合(1)可得,利用错位相减法结合等比数列的求和公式求解即可.

试题解析:(1)设等差数列的公差为,因为成等比数列,

所以,即

化简得

,所以,从而.

(2)因为

所以

所以

以上两个等式相减得

化简得.

【 方法点睛】本题主要考查等差数列的通项、等比数列的求和公式以及错位相减法求数列的前 项和,属于中档题.一般地,如果数列是等差数列,是等比数列,求数列的前项和时,可采用“错位相减法”求和,一般是和式两边同乘以等比数列的公比,然后作差求解, 在写出“与“” 的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网