题目内容

如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
2
,AF=1,M是线段EF的中点
(1)求证:AM∥平面BDE;
(2)求证:AM⊥平面BDF;
(3)求三棱锥M-BDE的体积VM-BDE
考点:棱柱、棱锥、棱台的体积,直线与平面平行的判定,直线与平面垂直的判定
专题:空间位置关系与距离,空间向量及应用
分析:(1)建立坐标系,利用向量法证明
OE
=
AM
,即可得到AM∥平面BDE;
(2)利用向量法证明AM⊥平面BDF;
(3)根据三棱锥的体积公式即可求VM-BDE
解答: 解:建立如图的直角坐标系,则各点的坐标分别为:
O(0,0,0),A(0,1,0),B(-1,0,0),C(0,-1,0,),D(1,0,0,),
E(0,-1,1),F(0,1,1),M(0,0,1).
(1)∵
OE
=(0,-1,1),
AM
=(0,-1,1),
OE
=
AM
,即AM∥OE,
又∵AM?平面BDE,OE?平面BDE,
∴AM∥平面BDE;
(2)∵
BD
=(2,0,0),
DF
=(-1,1,1)
AM
BD
=0,
AM
DF
=0-1+1=0,
∴AM⊥BD,AM⊥DF,
∵BD∩DF=D,
∴AM⊥平面BDF.
(3)∵AB=
2
,AF=1,
∴BD=AC=2,则OA=1,即四边形OAF为正方形,
连结OF,交AM于H,
则OH⊥AM,求OH⊥平面BDE,
∵AM∥平面BDE,
∴OH是点M到面BDE的距离.则OH=
1
2
OF=
2
2

∵OE=AM=
2

∴三棱锥M-BDE的体积VM-BDE=
1
3
×
1
2
BD•OE•OH
=
1
3
×
1
2
×2×
2
×
2
2
=
1
3
点评:本题考查的知识点是向量语言表述线线的垂直、平行关系,用空间向量求直线音质夹角、距离,用空间向量求平面间的夹角,其中建立空间坐标系,求出各顶点的坐标,进而求出相关直线的方向向量和平面的法向量是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网