题目内容
【题目】已知过点P(4,0)的动直线与抛物线C:交于点A,B,且(点O为坐标原点).
(1)求抛物线C的方程;
(2)当直线AB变动时,x轴上是否存在点Q使得点P到直线AQ,BQ的距离相等,若存在,求出点Q坐标,若不存在,说明理由.
【答案】(1)=;(2)轴上存在点,使得点到直线,的距离相等.
【解析】
(1)设过点的动直线为=,联立抛物线的方程,设,,运用韦达定理,结合向量的数量积的坐标表示,化简可得,进而得到抛物线方程;
(2)轴上假设存在点符合题意,由题意可得=,运用直线的斜率公式和韦达定理,化简可得的值,即可判断存在性.
(1)设过点的动直线为=,
代入抛物线=,可得=,
设,,
可得=,
由可得==,
解得=,则抛物线的方程为=;
(2)当直线变动时,轴上假设存在点使得点到直线,的距离相等,
由角平分线的判定定理可得为的角平分线,即有=,
由(1)可得=,=,
则,
化为=,
即为=,
化简可得=,
则轴上存在点,使得点到直线,的距离相等.
【题目】为了解高中学生对数学课是否喜爱是否和性别有关,随机调查220名高中学生,将他们的意见进行了统计,得到如下的列联表.
喜爱数学课 | 不喜爱数学课 | 合计 | |
男生 | 90 | 20 | 110 |
女生 | 70 | 40 | 110 |
合计 | 160 | 60 | 220 |
(1)根据上面的列联表判断,能否有的把握认为“喜爱数学课与性别”有关;
(2)为培养学习兴趣,从不喜爱数学课的学生中进行进一步了解,从上述调查的不喜爱数学课的人员中按分层抽样抽取6人,再从这6人中随机抽出2名进行电话回访,求抽到的2人中至少有1名“男生”的概率.
参考公式:.
P() | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
【题目】保护环境就是保护人类健康.空气中负离子浓度(单位:个/)可以作为衡量空气质量的一个指标,也对人的健康有一定的影响.根据我国部分省市区气象部门公布的数据,目前对空气负离子浓度的等级标准如下表.
表负离子浓度与空气质量对应标准:
负离子浓度 | 等级 | 和健康的关系 |
级 | 不利 | |
级 | 正常 | |
级 | 较有利 | |
级 | 有利 | |
级 | 相当有利 | |
级 | 很有利 | |
级 | 极有利 |
图空气负离子浓度
某地连续天监测了该地空气负离子浓度,并绘制了如图所示的折线图.根据折线图,下列说法错误的是( )
A.这天的空气负离子浓度总体越来越高
B.这天中空气负离子浓度的中位数约个
C.后天的空气质量对身体健康的有利程度明显好于前天
D.前天空气质量波动程度小于后天