题目内容

【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟订的价格进行试销得到如下数据:

单价x(元)

8

8.2

8.4

8.6

8.8

9

销量y(件)

92

82

83

80

75

68


(1)求出y关于x的线性回归方程 .其中 =250
(2)预计在今后的销售中,销量与单价仍然服从(I)中的关系,且该产品的成本是4元每件,为使工厂获得最大利润,该产品的单价应定为多少元?

【答案】
(1)解:由于 = (8+8.2+8.4+8.6+8.8+9)=8.5

= (90+84+83+80+75+68)=80,

代入方程可得:80=8.5b+250,可得b=﹣20

所以从而回归直线方程为y=﹣20x+250


(2)解:设工厂获得的利润为L元,依题意得

L=x(﹣20x+250)﹣4(﹣20x+250)

=﹣20x2+330x﹣1000

=﹣20(x﹣8.25)2+361.25,

当且仅当x=8.25时,L取得最大值.

故当单价定为8.25元时,工厂可获得最大利润


【解析】(1)计算平均数,利用 =250,求出b,即可求得回归直线方程;(2)设工厂获得的利润为L元,利用利润=销售收入﹣成本,建立函数,利用配方法可求工厂获得的利润最大.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网