题目内容

已知函数f(x)=sin(2x+
π
6
)+sin(2x-
π
6
)+cos2x+a (a∈R,a
为常数).
(1)求函数的最小正周期;
(2)求函数的单调递增区间;
(3)若x∈[0,  
π
2
]
时,f(x)的最小值为-2,求a的值.
分析:(1)先利用和角、差角的正弦公式,再利用辅助角公式化简函数,即可求函数的最小正周期;
(2)利用正弦函数的单调递增区间,可求函数的单调递增区间;
(3)先确定x∈[0,  
π
2
]
时,f(x)的值域,再利用f(x)的最小值为-2,即可求a的值.
解答:解:(1)f(x)=sin(2x+
π
6
)+sin(2x-
π
6
)+cos2x+a
=2sin2xcos
π
6
+cos2x+a=
3
sin2x+cos2x+a=2sin(2x+
π
6
)+a
∴T=
2
=π;
(2)令-
π
2
+2kπ
≤2x+
π
6
π
2
+2kπ
,可得-
π
3
+kπ
≤x≤
π
6
+kπ
(k∈Z)
∴函数的单调递增区间为[-
π
3
+kπ
π
6
+kπ
](k∈Z);
(3)∵x∈[0,  
π
2
]
,∴2x+
π
6
∈[
π
6
7
6
π
]
∴sin(2x+
π
6
)∈[-
1
2
,1]
∴2sin(2x+
π
6
)+a∈[-1+a,2+a]
∵f(x)的最小值为-2,
∴-1+a=-2,∴a=-1.
点评:本题考查三角函数的化简,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网