题目内容
设不等式的解集为M,.
(1)证明:;
(2)比较与的大小,并说明理由.
(1)证明过程详见解析;(2)|1-4ab|>2|a-b|.
解析试题分析:本题主要考查绝对值不等式的解法、绝对值的运算性质、作差法比较大小等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,先利用零点分段法将化为分段函数,解不等式求出M,再利用绝对值的运算性质化简得,由于,代入得;第二问,利用第一问的结论,作差比较大小,由于和均为正数,所以都平方,作差比较大小.
(1)记f(x)=|x-1|-|x+2|=
由-2<-2x-1<0解得,则. 3分
所以. 6分
(2)由(1)得,.
因为|1-4ab|2-4|a-b|2=(1-8ab+16a2b2)-4(a2-2ab+b2)
=(4a2-1)(4b2-1)>0, 9分
所以|1-4ab|2>4|a-b|2,故|1-4ab|>2|a-b|. 10分
考点:绝对值不等式的解法、绝对值的运算性质、作差法比较大小.
练习册系列答案
相关题目