题目内容
【题目】某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1千克、B原料2千克;生产乙产品1桶需耗A原料2千克,B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A、B原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )
A.1800元
B.2400元
C.2800元
D.3100元
【答案】C
【解析】解:设分别生产甲乙两种产品为x桶,y桶,利润为z元
则根据题意可得 ,z=300x+400y
作出不等式组表示的平面区域,如图所示
作直线L:3x+4y=0,然后把直线向可行域平移,
由 可得x=y=4,
此时z最大z=2800
练习册系列答案
相关题目
【题目】某商场经营一批进价是30元/件的商品,在市场试销中发现,此商品销售价元与日销售量件之间有如下关系:
x | 45 | 50 |
y | 27 | 12 |
(1)确定与的一个一次函数关系式;
(2)若日销售利润为P元,根据(I)中关系写出P关于的函数关系,并指出当销售单价为多少元时,才能获得最大的日销售利润?