题目内容
已知数列
的前
项和为
,且满足
(
),
,设
,
.
(1)求证:数列
是等比数列;
(2)若
≥
,
,求实数
的最小值;
(3)当
时,给出一个新数列
,其中
,设这个新数列的前
项和为
,若
可以写成
(
且
)的形式,则称
为“指数型和”.问
中的项是否存在“指数型和”,若存在,求出所有“指数型和”;若不存在,请说明理由.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011449495480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011449511297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011449542388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011449558366.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011449573379.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011449589654.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011449604577.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011449636494.png)
(1)求证:数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011449651487.png)
(2)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011449667391.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011449682344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011449636494.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011449714283.png)
(3)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011449745372.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011449760459.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011449776986.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011449511297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011449823384.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011449823384.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011449854341.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011449870607.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011449885519.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011449823384.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011449916504.png)
(1)根据等比数列的定义,相邻两项的比值为定值。
(2)-9
(3)①当
为偶数时,
,存在正整 数
,使得
,
,
,
,所以
且![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450260504.png)
,
相应的
,即有
,
为“指数型和”;
②当
为奇数时,
,由于
是
个奇数之和,仍为奇数,又
为正偶数,所以
不成立,此时没有“指数型和
(2)-9
(3)①当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011449932313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011449948944.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450088420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450166599.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450182619.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450197524.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450228691.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450244428.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450260504.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450275593.png)
相应的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450291396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450322510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450338374.png)
②当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011449932313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450369931.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450384623.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011449932313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450431317.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450447952.png)
试题分析:解:(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450462688.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450478675.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011449604577.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011449636494.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450540408.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240114505561262.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011449651487.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450587645.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450603760.png)
(2) 由(1)可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450618849.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450634989.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240114506501385.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450665487.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450681973.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450696420.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450696420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450540408.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011449714283.png)
(3)由(1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011449745372.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450774525.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450806437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450821750.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450837428.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450852443.png)
所以对正整数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011449511297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450946556.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450962553.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450977545.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011449870607.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011449885519.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011451024267.png)
①当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011449932313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011449948944.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011451071467.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011451102459.png)
所以存在正整 数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450088420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450166599.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450182619.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450197524.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450228691.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450244428.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450260504.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450275593.png)
相应的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450291396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450322510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450338374.png)
②当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011449932313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450369931.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450384623.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011449932313.png)
仍为奇数,又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450431317.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011450447952.png)
点评:解决的关键是能利用数列的定义和数列的单调性来求解参数的值,同事能借助于新定义来求解,属于基础题。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目