题目内容
函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex关于y轴对称,则f(x)= ( ).
A.ex+1 | B.ex-1 | C.e-x+1 | D.e-x-1 |
D
解析
练习册系列答案
相关题目
已知函数,其中为实数,若对恒成立,且,则的单调递增区间是
A. | B. |
C. | D. |
函数f(x)=x+sin x(x∈R)( )
A.是偶函数且为减函数 |
B.是偶函数且为增函数 |
C.是奇函数且为减函数 |
D.是奇函数且为增函数 |
已知函数f(x)=则函数f(x)的零点为 ( ).
A.,0 | B.-2,0 | C. | D.0 |
已知定义在R上的函数y=f(x)满足以下三个条件:①对于任意的x∈R,都有f(x+4)=f(x);②对于任意的x1,x2∈R,且0≤x1<x2≤2,都有f(x1)<f(x2);③函数y=f(x+2)的图象关于y轴对称.则下列结论中正确的是( ).
A.f(4.5)<f(7)<f(6.5) | B.f(7)<f(4.5)<f(6.5) |
C.f(7)<f(6.5)<f(4.5) | D.f(4.5)<f(6.5)<f(7) |
设奇函数f(x)在[-1,1]上是增函数,且f(-1)=-1,若函数f(x)≤t2-2at+1对所有的x∈[-1,1]都成立,则当a∈[-1,1]时t的取值范围是( ).
A.-2≤t≤2 | B.-≤t≤ |
C.t≤-2或t=0或t≥2 | D.t≤-或t=0或t≥ |
定义在R上的函数f(x)的导函数为f′(x),已知f(x+1)是偶函数,且(x-1)f′(x)<0.若x1<x2,且x1+x2>2,则f(x1)与f(x2)的大小关系是( ).
A.f(x1)<f(x2) | B.f(x1)=f(x2) |
C.f(x1)>f(x2) | D.不确定 |
已知f(x)是定义在R上的奇函数,若对于x≥0,都有f(x+2)=f(x),且当x∈[0,2]时,f(x)=ex-1,则f(2 013)+f(-2 014)=( ).
A.1-e | B.e-1 |
C.-1-e | D.e+1 |