题目内容
【题目】已知函数y=f(x)对任意x∈R,恒有(f(x)﹣sinx)(f(x)﹣cosx)=0成立,则下列关于函数 y=f(x)的说法正确的是( )
A.最小正周期是2π
B.值域是[﹣1,1]
C.是奇函数或是偶函数
D.以上都不对
【答案】D
【解析】解:由(f(x)﹣sinx)(f(x)﹣cosx)=0恒成立,可得f(x)=sinx,或f(x)=cosx,
故函数f(x)不是周期函数,也不是奇函数或偶函数,故排除A、C.
假设当x=kπ,k∈z时,f(x)=sinx;当x=kπ+ π,k∈z时,f(x)=cosx,
那么f(x)的值域就不是[﹣1,1],因为它永远不能取到±1,故选项B不对,
故选:D.
因为f(x)=sinx,或f(x)=cosx,所以他不是周期函数,也不是奇函数或偶函数,故排除A、C;通过举反例可得B不对,从而得出结论.
练习册系列答案
相关题目
【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如表资料:
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
昼夜温差 | 10 | 11 | 13 | 12 | 8 | 6 |
就诊人数(个) | 22 | 25 | 29 | 26 | 16 | 12 |
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(1)求选取的2组数据恰好是相邻两个月的概率;
(2)若选取的是1月与6月的两组数据,请根据3至5月份的数据,求出关于的线性回归方程;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问(2)中所得线性回归方程是否理想?
参考公式:.