题目内容

(2010•台州二模)若P0(x0,y0)在椭圆
x2
a2
+
y2
b2
=1
外,则过P0作椭圆的两条切线的切点为P1,P2,则切点弦P1P2所在直线方程是
x0x
a2
+
y0y
b2
=1
.那么对于双曲线则有如下命题:若P0(x0,y0)在双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
外,则过P0作双曲线的两条切线的切点为P1,P2,则切点弦P1P2的所在直线方程是
x0x
a2
-
y0y
b2
=1
x0x
a2
-
y0y
b2
=1
分析:根据椭圆与双曲线之间的类比推理,由椭圆标准方程类比双曲线标准方程,由点的坐标类比点的坐标,由切点弦P1P2所在直线方程类比切点弦P1P2所在直线方程,结合求椭圆切点弦P1P2所在直线方程方法类比求双曲线切点弦P1P2所在直线方程即可.
解答:解:若P0(x0,y0)在椭圆
x2
a2
+
y2
b2
=1
外,
则过P0作椭圆的两条切线的切点为P1,P2
则切点弦P1P2所在直线方程是
x0x
a2
+
y0y
b2
=1

那么对于双曲线则有如下命题:若P0(x0,y0)在双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
外,
则过P0作双曲线的两条切线的切点为P1,P2,则切点弦P1P2的所在直线方程是
x0x
a2
-
y0y
b2
=1

故答案为:
x0x
a2
-
y0y
b2
=1
点评:本题主要考查类比推理.类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网