题目内容
【题目】(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=A A1,∠BA A1=60°.
(Ⅰ)证明AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C 与平面BB1C1C所成角的正弦值。
【答案】(1)取AB的中点O,连接、、,因为CA=CB,所以,由于AB=A A1,∠BA A1=600,所以,所以平面,因为平面,所以AB⊥A1C;
(2)以O为原点,OA所在直线为x轴,所在直线为y轴建立如图直角坐标系,,,,则,,,设为平面的法向量,则,所以为平面的一个法向量,所以直线A1C 与平面BB1C1C所成角的正弦值.
【解析】(1)构造辅助线证明线面垂直,进而得到线线垂直;(2)利用向量法进行求解.
练习册系列答案
相关题目