搜索
题目内容
在等边
中,若以
为焦点的椭圆经过点
,则该椭圆的离心率为
试题答案
相关练习册答案
.
试题分析:设三角形的边长为
.则椭圆的
.故填
.通过假设三角形的边长写出椭圆对应的长半轴,短半轴,半焦距即可求得离心率.
练习册系列答案
1课一练课时达标系列答案
毕业班综合训练系列答案
各地期末测试大考卷系列答案
初中基础知识名师讲析与测试系列答案
毕业综合练习册系列答案
学习能力自测系列答案
单元同步训练系列答案
考点精练语法与单项选择系列答案
八斗才期末总动员系列答案
初中生世界系列答案
相关题目
已知动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上.
(1)求动圆圆心的轨迹M的方程;
(2)设过点P,且斜率为-
的直线与曲线M相交于A、B两点. 问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由.
在直角坐标系
中,已知中心在原点,离心率为
的椭圆E的一个焦点为圆
的圆心.
⑴求椭圆E的方程;
⑵设P是椭圆E上一点,过P作两条斜率之积为
的直线
,当直线
都与圆
相切时,求P点坐标.
在平面直角坐标系xOy中,点B与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于
.
(1)求动点P的轨迹方程;
(2)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由.
已知曲线
,求曲线过点
的切线方程。
已知椭圆
:
的左焦点为
,右焦点为
.
(Ⅰ)设直线
过点
且垂直于椭圆的长轴,动直线
垂直
于点P,线段
的垂直平分线交
于点M,求点M的轨迹
的方程;
(Ⅱ)设
为坐标原点,取曲线
上不同于
的点
,以
为直径作圆与
相交另外一点
,求该圆的面积最小时点
的坐标.
已知椭圆E:
,椭圆E的内接平行四边形的一组对边分别经过它的两个焦点(如图),则这个平行四边形面积的最大值是
.
已知椭圆
与双曲线
有共同的焦点
,
,椭圆的一个短轴端点为
,直线
与双曲线的一条渐近线平行,椭圆
与双曲线
的离心率分别为
,则
取值范围为( )
A.
B.
C.
D.
已知F
1
、F
2
分别是双曲线
的左、右焦点,P为双曲线右支上的任意一点且
,则双曲线离心率的取值范围是( )
A.(1,2]
B.[2 +
)
C.(1,3]
D.[3,+
)
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总