题目内容
14.在平面直角坐标系xOy中,若动点P(a,b)到直线l1:y=x,l2:y=-x+1的距离分别为d1,d2,且满足d1+2d2=2$\sqrt{2}$,则a2+b2的最大值为$\frac{17}{2}$.分析 利用点到直线的距离公式可得:|a-b|+2|a+b-1|=4.通过分类讨论可知:点(a,b)是如图所示的四边形的4条边.即可得到$\sqrt{{a}^{2}+{b}^{2}}$最大值.
解答 解:∵动点P(a,b)到两直线l1:y=x和l2:y=-x+的距离为d1,d2,且满足d1+2d2=2$\sqrt{2}$,
∴$\frac{|a-b|}{\sqrt{2}}$+2×$\frac{|a+b-1|}{\sqrt{2}}$=2$\sqrt{2}$,
化为|a-b|+2|a+b-1|=4.
分为以下4种情况:
①$\left\{\begin{array}{l}{a-b≥0}\\{a+b-1≥0}\\{3a+b-6=0}\end{array}\right.$
②$\left\{\begin{array}{l}{a-b≥0}\\{a+b-1<0}\\{a+3b+2=0}\end{array}\right.$,
③$\left\{\begin{array}{l}{a-b<0}\\{a+b-1≥0}\\{a+3b-6=0}\end{array}\right.$,
④$\left\{\begin{array}{l}{a-b<0}\\{a+b-1<0}\\{3a+b+2=0}\end{array}\right.$.
可知点(a,b)是如图所示的四边形的4条边.
可知:当取点A或C时,$\sqrt{{a}^{2}+{b}^{2}}$取得最大值,
由$\left\{\begin{array}{l}{3a+b-6=0}\\{a+b-1=0}\end{array}\right.$得$\left\{\begin{array}{l}{a=\frac{5}{2}}\\{b=-\frac{3}{2}}\end{array}\right.$,
即C($\frac{5}{2}$,-$\frac{3}{2}$),
此时a2+b2=($\frac{5}{2}$)2+(-$\frac{3}{2}$)2=$\frac{25}{4}+\frac{9}{4}=\frac{34}{4}$=$\frac{17}{2}$.
故答案为:$\frac{17}{2}$
点评 本题考查了点到直线的距离公式、含绝对值的等式、分类讨论等基础知识与基本技能方法,难度较大.
A. | (0,5)和(0,-5) | B. | ($\sqrt{7}$,0)和(-$\sqrt{7}$,0) | C. | (0,$\sqrt{7}$) | D. | (5,0)和(-5,0) |
A. | -a>-b | B. | a+c<b+c | C. | a2>b2 | D. | $\frac{1}{a}$>$\frac{1}{b}$ |
A. | $\frac{2\sqrt{3}}{3}\overrightarrow{a}$-(1+$\frac{\sqrt{3}}{6}$)$\overrightarrow{b}$ | B. | -$\frac{2\sqrt{3}}{3}\overrightarrow{a}$+(1+$\frac{\sqrt{3}}{6}$)$\overrightarrow{b}$ | C. | -$\frac{2\sqrt{3}}{3}\overrightarrow{a}$+(1-$\frac{\sqrt{3}}{6}$)$\overrightarrow{b}$ | D. | $\frac{2\sqrt{3}}{3}\overrightarrow{a}$+(1+$\frac{\sqrt{3}}{6}$)$\overrightarrow{b}$ |