题目内容

已知α,β∈(0,
π
2
),且sin(α+2β)=
7
5
sinα.
(1)求证:tan(α+β)=6tanβ;
(2)若tanα=3tanβ,求α的值.
分析:(1)依题意知,sin[(α+β)+β]=
7
5
sin[(α+β)-β],整理得sin(α+β)cosβ=6cos(α+β)sinβ,易证cos(α+β)≠0,继而可证tan(α+β)=6tanβ;
(2)由(1)得tan(α+β)=6tanβ,即
tanα+tanβ
1-tanαtanβ
=6tanβ,整理得tanβ=
1
3
tanα,代入前者即可求得tanα及α的值.
解答:(1)证明:∵sin(α+2β)=
7
5
sinα,
∴sin[(α+β)+β]=
7
5
sin[(α+β)-β],
∴sin(α+β)cosβ+cos(α+β)sinβ=
7
5
[sin(α+β)cosβ-cos(α+β)sinβ],
∴sin(α+β)cosβ=6cos(α+β)sinβ①
∵α,β∈(0,
π
2
),
∴α+β∈(0,π),
若cos(α+β)=0,则由①知sin(α+β)=0与α+β∈(0,π)矛盾,
∴cos(α+β)≠0,
∴①两边同除以6cos(α+β)cosβ得:tan(α+β)=6tanβ;  
(2)由(1)得tan(α+β)=6tanβ,即
tanα+tanβ
1-tanαtanβ
=6tanβ,
∴tanα=3tanβ,
∴tanβ=
1
3
tanα,
4
3
tanα
1-
1
3
tan
2
α
2tanα,
∵α∈(0,
π
2
),
∴tanα=1,
∴α=
π
4
点评:本题考查两角和与差的正弦函数,考查“拆分角”的应用,突出两角和与差的正切公式的考查及推理证明能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网