题目内容

10.给定区域D:$\left\{\begin{array}{l}{2x-y+k≥0}\\{x+y≥0}\\{x≤2}\end{array}\right.$,(k为非负实数),若对于区域D内的任意一个点M(x,y),恒有2x-5y+10k+15>0成立;且在区域D内存在点N(x0,y0),满足-7x0+2y0-5k2+2>0,则实数k的取值范围是(  )
A.[0,1)B.($\frac{1}{5}$,1)C.[0,$\frac{1}{5}$)D.($\frac{1}{5}$,+∞)

分析 对于区域D内的任意一个点M(x,y),恒有2x-5y+10k+15>0成立可化为(2x-5y)min>-10k-15;在区域D内存在点N(x0,y0),满足-7x0+2y0-5k2+2>0可化为(-7x0+2y0max>5k2-2;故由题意作出区域D,从而由线性规划化为最优解,从而求最值即可.

解答 解:由题意作出区域D如图,且A(-$\frac{k}{3}$,$\frac{k}{3}$),B(2,-2),C(2,k+4),
设z1=2x-5y,则y=$\frac{2}{5}$x-$\frac{1}{5}$z1
当直线y=$\frac{2}{5}$x-$\frac{1}{5}$z1过点C(2,k+4)时,其在y轴上的截距-$\frac{1}{5}$z1最大,即z1最小为-5k-16,
由2x-5y+10k+15>0恒成立知,-5k-16>-10k-15,即k>$\frac{1}{5}$;
设z2=-7x+2y,则y=$\frac{7}{2}$x+$\frac{{z}_{2}}{2}$,
当直线y=$\frac{7}{2}$x+$\frac{{z}_{2}}{2}$过点A(-$\frac{k}{3}$,$\frac{k}{3}$)时,其在y轴上的截距$\frac{{z}_{2}}{2}$最大,即z2最大,此时z2=3k;
故存在点N(x0,y0),满足-7x0+2y0-5k2+2>0可化为3k-5k2+2>0,
故-$\frac{2}{5}$<k<1,
综上所述,$\frac{1}{5}$<k<1;
故选B.

点评 本题考查了简单线性规划,作图要细致认真,同时考查了恒成立问题及存在性问题,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网