ÌâÄ¿ÄÚÈÝ
º¯Êýf£¨x£©µÄ¶¨ÒåÓòΪA£¬Èôx1£¬x2¡ÊAÇÒf£¨x1£©=f£¨x2£©Ê±×ÜÓÐx1=x2£¬Ôò³Æf£¨x£©Îªµ¥º¯Êý£®ÀýÈ磬º¯Êýf£¨x£©=2x+1£¨x¡ÊR£©Êǵ¥º¯Êý£®ÏÂÁÐÃüÌ⣺
¢Ùº¯Êýf£¨x£©=x2£¨x¡ÊR£©Êǵ¥º¯Êý£»
¢ÚÖ¸Êýº¯Êýf£¨x£©=2x£¨x¡ÊR£©Êǵ¥º¯Êý£»
¢ÛÈôf£¨x£©Îªµ¥º¯Êý£¬x1£¬x2¡ÊAÇÒx1¡Ùx2£¬Ôòf£¨x1£©¡Ùf£¨x2£©£»
¢ÜÔÚ¶¨ÒåÓòÉϾßÓе¥µ÷ÐԵĺ¯ÊýÒ»¶¨Êǵ¥º¯Êý£®
¢Ýf£¨x£©=|2x-1|Êǵ¥º¯Êý£®
ÆäÖеÄÕæÃüÌâÊÇ£¨¡¡¡¡£©
¢Ùº¯Êýf£¨x£©=x2£¨x¡ÊR£©Êǵ¥º¯Êý£»
¢ÚÖ¸Êýº¯Êýf£¨x£©=2x£¨x¡ÊR£©Êǵ¥º¯Êý£»
¢ÛÈôf£¨x£©Îªµ¥º¯Êý£¬x1£¬x2¡ÊAÇÒx1¡Ùx2£¬Ôòf£¨x1£©¡Ùf£¨x2£©£»
¢ÜÔÚ¶¨ÒåÓòÉϾßÓе¥µ÷ÐԵĺ¯ÊýÒ»¶¨Êǵ¥º¯Êý£®
¢Ýf£¨x£©=|2x-1|Êǵ¥º¯Êý£®
ÆäÖеÄÕæÃüÌâÊÇ£¨¡¡¡¡£©
·ÖÎö£ºÀûÓõ¥º¯ÊýµÄ¶¨Òåµ±f£¨x1£©=f£¨x2£©Ê±×ÜÓÐx1=x2£¬·Ö±ð¶ÔÎå¸öÃüÌâ½øÐÐÅжϣ¬¿ÉÒԵóöÕýÈ·½áÂÛ£®
½â´ð£º½â£º¢Ù¶ÔÓÚº¯Êýf£¨x£©=x2£¬ÓÉf£¨x1£©=f£¨x2£©µÃx12=x22£¬¡àx1=¡Àx2£¬ËùÒÔ¢Ù²»Êǵ¥º¯Êý£¬¢Ù´íÎó£»
¢Ú¶ÔÓÚº¯Êýf£¨x£©=2x£¬ÓÉf£¨x1£©=f£¨x2£©µÃ2x1=2x2£¬¡àx1=x2£¬ËùÒÔ¢ÚÊǵ¥º¯Êý£¬¢ÚÕýÈ·£»
¢Û¶ÔÓÚf£¨x£©Îªµ¥º¯Êý£¬Ôòf£¨x1£©=f£¨x2£©Ê±£¬ÓÐx1=x2£¬Äæ·ñÃüÌâÊÇx1¡Ùx2ʱ£¬ÓÐf£¨x1£©¡Ùf£¨x2£©£¬ËùÒÔ¢ÛÊÇÕýÈ·µÄ£»
¢ÜÈôº¯Êýf£¨x£©Êǵ¥µ÷º¯Êý£¬ÔòÂú×ãf£¨x1£©=f£¨x2£©Ê±£¬ÓÐx1=x2£¬ËùÒÔ¢ÜÊǵ¥º¯Êý£¬¢ÜÕýÈ·£»
¢Ý¶ÔÓÚº¯Êýf£¨x£©=|2x-1|£¬µ±f£¨x1£©=f£¨x2£©Ê±£¬|2x1-1|=|2x2-1|£¬¡àx1=x2»ò2x1+2x2=1£¬¡àx1Óëx2²»Ò»¶¨ÏàµÈ£®ËùÒԢݲ»Êǵ¥º¯Êý£¬¢Ý´íÎó£®
¹ÊÑ¡£ºB£®
¢Ú¶ÔÓÚº¯Êýf£¨x£©=2x£¬ÓÉf£¨x1£©=f£¨x2£©µÃ2x1=2x2£¬¡àx1=x2£¬ËùÒÔ¢ÚÊǵ¥º¯Êý£¬¢ÚÕýÈ·£»
¢Û¶ÔÓÚf£¨x£©Îªµ¥º¯Êý£¬Ôòf£¨x1£©=f£¨x2£©Ê±£¬ÓÐx1=x2£¬Äæ·ñÃüÌâÊÇx1¡Ùx2ʱ£¬ÓÐf£¨x1£©¡Ùf£¨x2£©£¬ËùÒÔ¢ÛÊÇÕýÈ·µÄ£»
¢ÜÈôº¯Êýf£¨x£©Êǵ¥µ÷º¯Êý£¬ÔòÂú×ãf£¨x1£©=f£¨x2£©Ê±£¬ÓÐx1=x2£¬ËùÒÔ¢ÜÊǵ¥º¯Êý£¬¢ÜÕýÈ·£»
¢Ý¶ÔÓÚº¯Êýf£¨x£©=|2x-1|£¬µ±f£¨x1£©=f£¨x2£©Ê±£¬|2x1-1|=|2x2-1|£¬¡àx1=x2»ò2x1+2x2=1£¬¡àx1Óëx2²»Ò»¶¨ÏàµÈ£®ËùÒԢݲ»Êǵ¥º¯Êý£¬¢Ý´íÎó£®
¹ÊÑ¡£ºB£®
µãÆÀ£º±¾Ì⿼²éÁ˺¯ÊýÐÔÖʵÄÍÆµ¼ÓëÅжϣ¬¿¼²éѧÉú·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦£¬ÓÐÒ»¶¨µÄ×ÛºÏÐÔ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
Èôº¯Êýf£¨x£©µÄ¶¨ÒåÓòΪ[-1£¬2]£¬Ôòº¯Êý
µÄ¶¨ÒåÓòΪ£¨¡¡¡¡£©
| f(x+2) |
| x |
| A¡¢[-1£¬0£©¡È£¨0£¬2] |
| B¡¢[-3£¬0£© |
| C¡¢[1£¬4] |
| D¡¢£¨0£¬2] |