题目内容
已知向量a=(![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225907586913699/SYS201311012259075869136019_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225907586913699/SYS201311012259075869136019_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225907586913699/SYS201311012259075869136019_ST/2.png)
(1)求ω值;
(2)若
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225907586913699/SYS201311012259075869136019_ST/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225907586913699/SYS201311012259075869136019_ST/4.png)
(3)若
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225907586913699/SYS201311012259075869136019_ST/5.png)
【答案】分析:(1)先利用二倍角公式和两角和公式对函数解析式化简整理,然后利用两相邻对称轴间的距离求得函数的周期,进而根据周期公式求得ω.
(2)根据(1)中整理函数解析式,依据
和同角三角函数的基本关系求得cos(4x-
)的值,进而根据
利用两角和公式求得答案.
(3)根据
和余弦函数的单调性求得x的范围,令g(x)=m,则可作出,f(x)和g(x)的图象,利用数形结合的方法求得m的值.
解答:解:由题意,![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225907586913699/SYS201311012259075869136019_DA/4.png)
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225907586913699/SYS201311012259075869136019_DA/5.png)
=
=
,
(1)∵两相邻对称轴间的距离为
,
∴
,
∴ω=2.
(2)由(1)得,
,
∵
,
∴
,
∴
,
∴
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225907586913699/SYS201311012259075869136019_DA/15.png)
=
=
.
(3)∵
,且余弦函数在(0,π)上是减函数,
∴
,
令
=
,g(x)=m,在同一直角坐标系中作出两个函数的图象,
可知m=1或m=-
.
点评:本题主要考查了三角函数的周期性及其求法,两角和公式的化简求值,正弦函数和余弦函数的单调性.考查了三角函数基础知识的综合运用.
(2)根据(1)中整理函数解析式,依据
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225907586913699/SYS201311012259075869136019_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225907586913699/SYS201311012259075869136019_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225907586913699/SYS201311012259075869136019_DA/2.png)
(3)根据
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225907586913699/SYS201311012259075869136019_DA/3.png)
解答:解:由题意,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225907586913699/SYS201311012259075869136019_DA/4.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225907586913699/SYS201311012259075869136019_DA/5.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225907586913699/SYS201311012259075869136019_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225907586913699/SYS201311012259075869136019_DA/7.png)
(1)∵两相邻对称轴间的距离为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225907586913699/SYS201311012259075869136019_DA/8.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225907586913699/SYS201311012259075869136019_DA/9.png)
∴ω=2.
(2)由(1)得,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225907586913699/SYS201311012259075869136019_DA/10.png)
∵
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225907586913699/SYS201311012259075869136019_DA/11.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225907586913699/SYS201311012259075869136019_DA/12.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225907586913699/SYS201311012259075869136019_DA/13.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225907586913699/SYS201311012259075869136019_DA/14.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225907586913699/SYS201311012259075869136019_DA/15.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225907586913699/SYS201311012259075869136019_DA/16.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225907586913699/SYS201311012259075869136019_DA/17.png)
(3)∵
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225907586913699/SYS201311012259075869136019_DA/18.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225907586913699/SYS201311012259075869136019_DA/19.png)
令
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225907586913699/SYS201311012259075869136019_DA/20.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225907586913699/SYS201311012259075869136019_DA/21.png)
可知m=1或m=-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225907586913699/SYS201311012259075869136019_DA/22.png)
点评:本题主要考查了三角函数的周期性及其求法,两角和公式的化简求值,正弦函数和余弦函数的单调性.考查了三角函数基础知识的综合运用.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目