题目内容
【题目】设,若对一切恒成立, 给出以下结论:
①;
②;
③的单调递增区间是 ;
④函数既不是奇函数也不是偶函数;
⑤存在经过点的直线与函数的图象不相交.其中正确结论的个数为( )
A. 1B. 2C. 3D. 4
【答案】C
【解析】
根据可知,从而得到,将化简为;代入求值即可知①②正确;当和时,可验证出③所给区间可能为单调递减区间,③错误;利用奇偶性定义可知④正确;根据函数图象可知无交点时需,又,可知不成立,故⑤错误.
由对恒成立可知:
即:,整理可得:
①,可知①正确;
②;
,可知②正确;
③当时,
当时,为的单调递增区间
当时,为的单调递减区间
可知③错误;
④由函数解析式可知:且,则为非奇非偶函数,可知④正确;
⑤要使得经过的直线与函数无交点,则直线需与轴平行且
又 ,不成立,可知⑤错误.
综上所述:①②④正确
本题正确选项:
练习册系列答案
相关题目