题目内容
数列{an}的首项a1=1,前n项和为Sn,满足关系3tSn-(2t+3)Sn-1=3t(t>0,n=2,3,4…).
(I)设数列{an}的公比为f(t),作数列{bn},使b1=1,bn=f(
)(n=2,3,4…).求bn;
(II)求Tn=(b1b2-b2b3)+(b3b4-b4b5)+…+(b2n-1b2n-b2nb2n+1)的值.
(I)设数列{an}的公比为f(t),作数列{bn},使b1=1,bn=f(
1 | bn-1 |
(II)求Tn=(b1b2-b2b3)+(b3b4-b4b5)+…+(b2n-1b2n-b2nb2n+1)的值.
分析:(1)由3tSn-(2t+3)Sn-1=3t,可得3tsn+1-(2t+3)Sn =3t (n≥2),两式相减得3tan+1-(2t+3)an =0.化简变形可得
=
(n≥1),故数列{an}为等比数列,
从而证得数列{bn}是以 b1=1为首项,以d=
为公差的等差数列,从而求得 bn=
n+
.
(2)化简 Tn 为 b2(b1-b3)+b4(b3-b5)+…+b2n(b2n-1-b2n+1)=2d (b2+b4+…+b2n)=2×
[n•
+
•
],运算求得结果.
an+1 |
an |
2t+3 |
3t |
从而证得数列{bn}是以 b1=1为首项,以d=
2 |
3 |
2 |
3 |
1 |
3 |
(2)化简 Tn 为 b2(b1-b3)+b4(b3-b5)+…+b2n(b2n-1-b2n+1)=2d (b2+b4+…+b2n)=2×
2 |
3 |
5 |
3 |
n(n-1) |
2 |
4 |
3 |
解答:解:(1)证明:∵3tSn-(2t+3)Sn-1=3t,∴3tsn+1-(2t+3)Sn =3t (n≥2),两式相减得3tan+1-(2t+3)an =0.
又t>0,∴
=
(n≥2),又当n=2时,3ts2-(2t+3)s1=3t,
即3t (a1+a2)-(2t+3)a1=3t,得 a2=
,即
=
,∴
=
(n≥1),∴数列{an}为等比数列.
由已知得f(n)=
,∴bn=f(
)=
=bn-1+
(n≥2).
∴数列{bn}是以 b1=1为首项,以d=
为公差的等差数列,故 bn=
n+
.
(2)Tn=(b1b2-b2b3)+(b3b4-b4b5)+…+(b2n-1b2n-b2nb2n+1)=b2(b1-b3)+b4(b3-b5)+…+b2n(b2n-1-b2n+1)
=2d (b2+b4+…+b2n)=2×
[n•
+
•
]=-
n2-
.
又t>0,∴
an+1 |
an |
2t+3 |
3t |
即3t (a1+a2)-(2t+3)a1=3t,得 a2=
2t+3 |
3t |
a2 |
a1 |
2t+3 |
3t |
an+1 |
an |
2t+3 |
3t |
由已知得f(n)=
2t+3 |
3t |
1 |
bn-1 |
| ||
|
2 |
3 |
∴数列{bn}是以 b1=1为首项,以d=
2 |
3 |
2 |
3 |
1 |
3 |
(2)Tn=(b1b2-b2b3)+(b3b4-b4b5)+…+(b2n-1b2n-b2nb2n+1)=b2(b1-b3)+b4(b3-b5)+…+b2n(b2n-1-b2n+1)
=2d (b2+b4+…+b2n)=2×
2 |
3 |
5 |
3 |
n(n-1) |
2 |
4 |
3 |
8 |
9 |
4n |
3 |
点评:本题主要考查利用数列的递推关系求数列的通项公式,等差关系、等比关系的确定,等差数列的前n项和公式的应用,属于难题.
练习册系列答案
相关题目