ÌâÄ¿ÄÚÈÝ
ÉèP£¨a£¬b£©£¨a•b¡Ù0£©¡¢R£¨a£¬2£©Îª×ø±êƽÃæxoyÉϵĵ㣬ֱÏßOR£¨OΪ×ø±êԵ㣩ÓëÅ×ÎïÏßy2=4 | ab |
£¨1£©Èô¶ÔÈÎÒâab¡Ù0£¬µãQÔÚÅ×ÎïÏßy=mx2+1£¨m¡Ù0£©ÉÏ£¬ÊÔÎʵ±mΪºÎֵʱ£¬µãPÔÚijһԲÉÏ£¬²¢Çó³ö¸ÃÔ²·½³ÌM£»
£¨2£©ÈôµãP£¨a£¬b£©£¨ab¡Ù0£©ÔÚÍÖÔ²x2+4y2=1ÉÏ£¬ÊÔÎÊ£ºµãQÄÜ·ñÔÚijһ˫ÇúÏßÉÏ£¬ÈôÄÜ£¬Çó³ö¸ÃË«ÇúÏß·½³Ì£¬Èô²»ÄÜ£¬ËµÃ÷ÀíÓÉ£»
£¨3£©¶Ô£¨1£©ÖеãPËùÔÚÔ²·½³ÌM£¬ÉèA¡¢BÊÇÔ²MÉÏÁ½µã£¬ÇÒÂú×ã|OA|•|OB|=1£¬ÊÔÎÊ£ºÊÇ·ñ´æÔÚÒ»¸ö¶¨Ô²S£¬Ê¹Ö±ÏßABºãÓëÔ²SÏàÇУ®
·ÖÎö£º£¨1£©°ÑÖ±Ïß·½³ÌÓëÅ×ÎïÏß·½³ÌÁªÁ¢ÇóµÃ½»µãQµÄ×ø±ê£¬´úÈëy=mx2+1£¬ÇóµÃaºÍbµÄ¹Øϵʽ£¬½ø¶øÅжϳöµ±m=1ʱ£¬µãP£¨a£¬b£©ÔÚÔ²M£ºx2+£¨y-1£©2=1ÉÏ
£¨2£©Éèa=cos¦È£¬b=
sin¦È£¬½ø¶ø¸ù¾ÝµãQµÄ×ø±ê£¬ÇóµÃy2Q-mx2Q=16£¬½ø¶øÅжϳö£¬µãQÔÚË«ÇúÏßy2-4x2=16ÉÏ£®
£¨3£©ÉèAB£ºx=ky+¦Ë£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬½ø¶ø¸ù¾Ý|OA|•|OB|=1£¬ÇóµÃy2•y1£¬½ø¶ø°ÑÖ±ÏßÓëÔ²·½³ÌÁªÁ¢£¬ÇóµÃy2•y1£¬½ø¶ø¸ù¾ÝÔµãOµ½Ö±ÏßAB¾àÀëÇóµÃd£¬½ø¶øÅжϳöÖ±ÏßABºãÓëÔ²S£ºx2+y2=
ÏàÇУ®
£¨2£©Éèa=cos¦È£¬b=
1 |
2 |
£¨3£©ÉèAB£ºx=ky+¦Ë£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬½ø¶ø¸ù¾Ý|OA|•|OB|=1£¬ÇóµÃy2•y1£¬½ø¶ø°ÑÖ±ÏßÓëÔ²·½³ÌÁªÁ¢£¬ÇóµÃy2•y1£¬½ø¶ø¸ù¾ÝÔµãOµ½Ö±ÏßAB¾àÀëÇóµÃd£¬½ø¶øÅжϳöÖ±ÏßABºãÓëÔ²S£ºx2+y2=
1 |
4 |
½â´ð£º½â£º£¨1£©¡ß
?Q(
£¬
)£¬
´úÈëy=mx2+1¡à
=m(
)2+1?ma2+b2-2b=0
µ±m=1ʱ£¬µãP£¨a£¬b£©ÔÚÔ²M£ºx2+£¨y-1£©2=1ÉÏ
£¨2£©¡ßP£¨a£¬b£©ÔÚÍÖÔ²x2+4y2=1ÉÏ£¬¼´a2+£¨2b£©2=1
¡à¿ÉÉèa=cos¦È£¬b=
sin¦È
ÓÖ¡ßQ(
£¬
)£¬
¡à
?
-m
=(
)2-m(
)2=(
)2-m(
)2=
-
=16£¨Áîm=4£©
¡àµãQÔÚË«ÇúÏßy2-4x2=16ÉÏ
£¨3£©¡ßÔ²MµÄ·½³ÌΪx2+£¨y-1£©2=1
ÉèAB£ºx=ky+¦Ë£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÓÉ|OA|•|OB|=1
•
=
•
=
•
=1?y1y2=
ÓÖ¡ß
?£¨k2+1£©y2+2£¨k¦Ë-1£©y+¦Ë2=0£¬
¡ày1y2=
=
?
=
ÓÖÔµãOµ½Ö±ÏßAB¾àÀëd=
¡àd=
£¬¼´ÔµãOµ½Ö±ÏßABµÄ¾àÀëºãΪ
¡àÖ±ÏßABºãÓëÔ²S£ºx2+y2=
ÏàÇУ®
|
a |
b |
2 |
b |
´úÈëy=mx2+1¡à
2 |
b |
a |
b |
µ±m=1ʱ£¬µãP£¨a£¬b£©ÔÚÔ²M£ºx2+£¨y-1£©2=1ÉÏ
£¨2£©¡ßP£¨a£¬b£©ÔÚÍÖÔ²x2+4y2=1ÉÏ£¬¼´a2+£¨2b£©2=1
¡à¿ÉÉèa=cos¦È£¬b=
1 |
2 |
ÓÖ¡ßQ(
a |
b |
2 |
b |
¡à
|
y | 2 Q |
x | 2 Q |
2 |
b |
a |
b |
4 |
sin¦È |
2cos¦È |
sin¦È |
16 |
sin2¦È |
4mcos2¦È |
sin2¦È |
¡àµãQÔÚË«ÇúÏßy2-4x2=16ÉÏ
£¨3£©¡ßÔ²MµÄ·½³ÌΪx2+£¨y-1£©2=1
ÉèAB£ºx=ky+¦Ë£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÓÉ|OA|•|OB|=1
|
|
1-(y1-1)2+
|
1-(y2-1)2+
|
2y1 |
2y2 |
1 |
4 |
ÓÖ¡ß
|
¡ày1y2=
¦Ë2 |
k2+1 |
1 |
4 |
|¦Ë| | ||
|
1 |
2 |
ÓÖÔµãOµ½Ö±ÏßAB¾àÀëd=
|¦Ë| | ||
|
¡àd=
1 |
2 |
1 |
2 |
¡àÖ±ÏßABºãÓëÔ²S£ºx2+y2=
1 |
4 |
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÖ±ÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÎÊÌ⣮ֱÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÎÊÌâÄÜÓÐЧµØ¿¼²é¿¼Éú·ÖÎöÎÊÌâ¡¢½â¾öÎÊÌâµÄÄÜÁ¦£¬Òò´Ë±¶Êܸ߿¼ÃüÌâÈ˵ÄÇàíù£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿