题目内容
设O、A、B是平面内不共线的三点,记
=
,
=
,若P为线段AB垂直平分线上任意一点,且
=
,当|
|=2,|
|=1时,则
•(
-
等于( )
OA |
a |
OB |
b |
OP |
p |
a |
b |
p |
a |
b) |
分析:设M是AB的中点,将向量
表示成
+
,而
-
=
,从而
•(
-
)=
•
+
•
,再结合P为线段AB垂直平分线上任意一点,得
•
=0,转化为求数量积
•
,再用
=
(
+
),
-
=
代入,得
•(
-
)=
(|
| 2-|
| 2),结合已知条件的数据,不难得出这个数量积.
OP |
OM |
MP |
OA |
OB |
BA |
OP |
OA |
OB |
OM |
BA |
MP |
BA |
MP |
BA |
OM |
BA |
OM |
1 |
2 |
OA |
OB |
OA |
OB |
BA |
OP |
OA |
OB |
1 |
2 |
OA |
OB |
解答:解:设M是线段AB的中点,根据题意,得
=
+
,
-
=
∴
•(
-
)=(
+
)•
=
•
+
•
∵
与
互相垂直
∴
•
=0
因此
•(
-
)=
•
又∵△OAB中,OM是AB边上的中线
∴
=
(
+
)
∴
•
=
(
+
) •
=
(
+
)(
-
)
即
•
=
(|
| 2-|
| 2)
∵|
|=2,|
|=1,
∴
•(
-
)=
•
=
(22-12)=
故选D.
OP |
OM |
MP |
OA |
OB |
BA |
∴
OP |
OA |
OB |
OM |
MP |
BA |
OM |
BA |
MP |
BA |
∵
MP |
BA |
∴
MP |
BA |
因此
OP |
OA |
OB |
OM |
BA |
又∵△OAB中,OM是AB边上的中线
∴
OM |
1 |
2 |
OA |
OB |
∴
OM |
BA |
1 |
2 |
OA |
OB |
BA |
1 |
2 |
OA |
OB |
OA |
OB |
即
OM |
BA |
1 |
2 |
OA |
OB |
∵|
OA |
OB |
∴
OP |
OA |
OB |
OM |
BA |
1 |
2 |
3 |
2 |
故选D.
点评:本题考查了平面向量数量积的运算,着重考查了数量积在三角形中的应用,考查转化思想,计算能力,是中档题.
练习册系列答案
相关题目