题目内容

设O、A、B是平面内不共线的三点,记
OA
=
a
 
OB
=
b
,若P为线段AB垂直平分线上任意一点,且
OP
=
p
,当|
a
|=2,|
b
|=1时,则
p
•(
a
-
b)
等于(  )
分析:设M是AB的中点,将向量
OP
表示成
OM
+
MP
,而
OA
-
OB
=
BA
,从而
OP
•(
OA
-
OB
)=
OM
BA
+
MP
BA
,再结合P为线段AB垂直平分线上任意一点,得
MP
BA
=0
,转化为求数量积
OM
BA
,再用
OM
=
1
2
(
OA
+
OB
)
OA
-
OB
=
BA
代入,得
OP
•(
OA
-
OB
)
=
1
2
(|
OA
| 2-|
OB
| 2)
,结合已知条件的数据,不难得出这个数量积.
解答:解:设M是线段AB的中点,根据题意,得
OP
=
OM
+
MP
OA
-
OB
=
BA

OP
•(
OA
-
OB
)=(
OM
+
MP
)•
BA
=
OM
BA
+
MP
BA

MP
BA
互相垂直
MP
BA
=0

因此
OP
•(
OA
-
OB
)=
OM
BA

又∵△OAB中,OM是AB边上的中线
OM
=
1
2
(
OA
+
OB
)

OM
BA
=
1
2
(
OA
+
OB
) •
BA
=
1
2
(
OA
+
OB
)(
OA
-
OB
)

OM
BA
=
1
2
(|
OA
| 2-|
OB
| 2)

|
OA
|=2
|
OB
|=1

OP
•(
OA
-
OB
)
=
OM
BA
=
1
2
(22-12)=
3
2

故选D.
点评:本题考查了平面向量数量积的运算,着重考查了数量积在三角形中的应用,考查转化思想,计算能力,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网