题目内容

(本小题满分l2分)
如图,在多面体ABCDEF中,ABCD为菱形,ABC=60,EC面ABCD,FA面ABCD,G为BF的中点,若EG//面ABCD.

(1)求证:EG面ABF;
(2)若AF=AB,求二面角B—EF—D的余弦值.

(1)∵在正三角形ABC中,CMAB,又AFCM∴EGAB, EGAF,∴EG面ABF.
(2)

解析试题分析:(1)取AB的中点M,连结GM,MC,G为BF的中点,

所以GM //FA,又EC面ABCD, FA面ABCD,
∵CE//AF,
∴CE//GM,
∵面CEGM面ABCD=CM,
EG// 面ABCD,
∴EG//CM,
∵在正三角形ABC中,CMAB,又AFCM
∴EGAB, EGAF,
∴EG面ABF.
(2)建立如图所示的坐标系,设AB=2,
则B()E(0,1,1) F(0,-1,2)

=(0,-2,1) , =(,-1,-1),   =(,1, 1),
设平面BEF的法向量=()则
     令,则,
=()                 
同理,可求平面DEF的法向量  =(-
设所求二面角的平面角为,则
=.
考点:用空间向量求平面间的夹角;直线与平面垂直的判定;二面角的平面角及求法.
点评:本题考查线面垂直,考查面面角,正确运用线面垂直的判定,求出平面的法向量是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网