题目内容
观察以下等式:
sin230°+cos260°+sin 30°·cos 60°=
,
sin240°+cos270°+sin 40°·cos 70°=
,
sin215°+cos245°+sin 15°·cos 45°=
.
…
写出反映一般规律的等式,并给予证明.
sin230°+cos260°+sin 30°·cos 60°=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040700099385.png)
sin240°+cos270°+sin 40°·cos 70°=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040700099385.png)
sin215°+cos245°+sin 15°·cos 45°=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040700099385.png)
…
写出反映一般规律的等式,并给予证明.
sin2α+cos2(α+30°)+ sin α·cos(α+30°)=![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040700099385.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040700099385.png)
反映一般规律的等式是(表述形式不唯一):
sin2α+cos2(α+30°)+ sin α·cos(α+30°)=
.
证明如下:
sin2α+cos2(α+30°)+sin α·cos(α+30°)
=sin2α+(cos α·cos 30°-sin α·sin 30°)2
+sin α·(cos αcos 30°-sin α·sin 30°)
=sin2α+
2+
sin α ·cos α-
sin2α
=sin2α+
cos2α+
sin2α-
sin α·cos α+
sin α·cos α-
sin2α=
(sin2α+cos2α)=
.
sin2α+cos2(α+30°)+ sin α·cos(α+30°)=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040700099385.png)
证明如下:
sin2α+cos2(α+30°)+sin α·cos(α+30°)
=sin2α+(cos α·cos 30°-sin α·sin 30°)2
+sin α·(cos αcos 30°-sin α·sin 30°)
=sin2α+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240407001921188.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040700208453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040700223338.png)
=sin2α+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040700099385.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040700255303.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040700208453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040700208453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040700223338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040700099385.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040700099385.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目