题目内容
(08年龙岩一中模拟文)右图中阴影部分表示的集合是( )
A. B.
C.() D.()
(08年龙岩一中模拟)(12分)
如图,三棱锥P―ABC中, PC平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD平面PAB.
(Ⅰ) 求证:AB平面PCB;
(Ⅱ)求异面直线AP与BC所成角的大小;
(Ⅲ)求二面角C-PA-B的大小的余弦值.
(08年龙岩一中模拟文)(12分)
设a、b、c分别是先后三次抛掷一枚骰子得到的点数。
(Ⅰ)求a+b+c为奇数的概率
(Ⅱ)设有关于的一元二次方程,求上述方程有两个不相等实根的概率.
(08年龙岩一中模拟理)(14分)
已知函数,.
(1)证明:当时,在上是增函数;
(2)对于给定的闭区间,试说明存在实数 ,当时,在闭区间上是减函数;
(3)证明:.
设数列的前n项和为,已知
(Ⅰ)求数列的通项公式;
(Ⅱ)设记
并证明.
盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球. 规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得分. 现从盒内一次性取3个球.
(Ⅰ)求取出的3个球得分之和恰为1分的概率;
(Ⅱ)设为取出的3个球中白色球的个数,求的分布列和数学期望.