题目内容
【题目】已知函数;.
(1)判断在上的单调性,并说明理由;
(2)求的极值;
(3)当时,,求实数的取值范围.
【答案】(1)见解析(2)极小值.(3)
【解析】
(1)求导数,根据导函数符号确定单调性,(2)利用导数研究导函数单调性,根据单调性确定导函数符号变化规律,即得函数极值,(3)先根据特殊值得,再由(1)得,结合得,因此,最后利用(2)证明满足条件.
解:(1)∵,
则.
当时,,,得,
∴在上单调递减.
(2)∵,
则,
令,则.
∴即在上单调递增.
又,
∴当时,,当时,.
∴在上单调递增,在上单调递减,
∴有极小值.
(3)令,
即对成立.
①时,与矛盾,不成立.
②时,当时,
令,则,
∴在上单调递增,
又,∴,即.
由(2)知.
当时,,而,等号不同时成立,
∴.
③时,若,则,
即,
由(1)知,
即.
∴,
∴不成立.
综上,的取值范围为.
【题目】近年来,随着互联网技术的快速发展,共享经济覆盖的范围迅速扩张,继共享单车、共享汽车之后,共享房屋以“民宿”、“农家乐”等形式开始在很多平台上线.某创业者计划在某景区附近租赁一套农房发展成特色“农家乐”,为了确定未来发展方向,此创业者对该景区附近六家“农家乐”跟踪调查了天.得到的统计数据如下表,为收费标准(单位:元/日),为入住天数(单位:),以频率作为各自的“入住率”,收费标准与“入住率”的散点图如图
x | 50 | 100 | 150 | 200 | 300 | 400 |
t | 90 | 65 | 45 | 30 | 20 | 20 |
(1)若从以上六家“农家乐”中随机抽取两家深入调查,记为“入住率”超过的农家乐的个数,求的概率分布列;
(2)令,由散点图判断与哪个更合适于此模型(给出判断即可,不必说明理由)?并根据你的判断结果求回归方程.(结果保留一位小数)
(3)若一年按天计算,试估计收费标准为多少时,年销售额最大?(年销售额入住率收费标准)
参考数据: