题目内容
设数列{an}的前n项和为Sn,a1=2,Sn=nan-n(n-1).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足:an=
+
+
+…+
,求数列{bn}的通项公式;
(Ⅲ)令cn=
(n∈N*),求数列{cn}的前n项和Tn.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足:an=
b1 |
3+1 |
b2 |
3×2+1 |
b3 |
3×3+1 |
bn |
3n+1 |
(Ⅲ)令cn=
anbn |
4 |
分析:(I)由题意已知数列{an}的前n项和为Sn,且a1=1,Sn=nan-n(n-1),已知前n项和求通项;
(II)在(I)中求出数列an的通项,利用列项相消法求解即可.
(III)利用(I)(II)得出cn=
=
=3n2+n,再利用正整数的平方和公式及等差数列的求和公式求解即得.
(II)在(I)中求出数列an的通项,利用列项相消法求解即可.
(III)利用(I)(II)得出cn=
a nb n |
4 |
2n•2(3n+1) |
4 |
解答:解:(I)n≥2时,Sn=nan-n(n-1),
∴Sn-1=(n-1)an-1-(n-1)(n-2),
两式相减得an=nan-(n-1)an-1-2(n-1),则(n-1)an=(n-1)an-1+2(n-1),
∴an=an-1+2
∴{an}是首项为2,公差为2的等差数列,
∴an=2n;
(II)∵an=
+
+
+…+
,
∴an-1=
+
+
+…+
,
∴当n≥2时,有an-an-1=
,
由(I)得an-an-1=2,
∴bn=2(3n+1),
而当n=1时,也成立,
∴数列{bn}的通项公式bn=2(3n+1)(n∈N*),
(III)cn=
=
=3n2+n,
∴数列{cn}的前n项和Tn=3(12+22+32+…+n2)+(1+2+3+…+n)
=3×
n(n+1)(2n+1)+
n(n+1)
=
n(n+1)(4n+5).
∴Sn-1=(n-1)an-1-(n-1)(n-2),
两式相减得an=nan-(n-1)an-1-2(n-1),则(n-1)an=(n-1)an-1+2(n-1),
∴an=an-1+2
∴{an}是首项为2,公差为2的等差数列,
∴an=2n;
(II)∵an=
b 1 |
3+1 |
b 2 |
3×2+1 |
b 3 |
3×3+1 |
bn |
3n+1 |
∴an-1=
b 1 |
3+1 |
b 2 |
3×2+1 |
b 3 |
3×3+1 |
b n-1 |
3(n-1)+1 |
∴当n≥2时,有an-an-1=
b n |
3n+1 |
由(I)得an-an-1=2,
∴bn=2(3n+1),
而当n=1时,也成立,
∴数列{bn}的通项公式bn=2(3n+1)(n∈N*),
(III)cn=
a nb n |
4 |
2n•2(3n+1) |
4 |
∴数列{cn}的前n项和Tn=3(12+22+32+…+n2)+(1+2+3+…+n)
=3×
1 |
6 |
1 |
2 |
=
1 |
6 |
点评:此题考查了数列递推式、等差数列、已知数列的前n项和求其通项,还考查了公式法求出数列的前n项的和.
练习册系列答案
相关题目