题目内容
【题目】已知函数.
(1)求的最小正周期;
(2)求在区间上对称轴、对称中心及其最值.
【答案】(1)最小正周期为(2)对称轴,对称中心为,最大值为,最小值为
【解析】
(1)根据同角三角函数关系式的平方和关系、降幂公式、辅助角公式把函数的解析式化简成正弦型函数解析形式,最后根据最小正周期公式求出函数的最小正周期;
(2)利用正弦型函数的对称性和单调性,求出在区间上对称轴、对称中心及其最值
解:(1)因为
,
所以,函数的最小正周期为.
(2)由(1)知,
因为,所以,①
令,得,
所以,即为所求函数在上的对称轴;
令,得,所以,
所以函数在上的对称中心为;(*)
易判断函数在上单调递增;在上单调递增.
所以,,,,
故函数在区间上最大值为,最小值为.
【另解】
接(*)式
由①得,所以,
故函数在区间上最大值为,最小值为.
练习册系列答案
相关题目