题目内容

【题目】从正方体ABCD﹣A1B1C1D1的8个顶点中任意取4个不同的顶点,这4个顶点可能是:
1)矩形的4个顶点;
2)每个面都是等边三角形的四面体的4个顶点;
3)每个面都是直角三角形的四面体的4个顶点;
4)有三个面是等腰直角三角形,有一个面是等边三角形的四面体的4个顶点.
其中正确结论的个数为

【答案】4
【解析】解:如图所示:
四边形ABCD为矩形,故(1)满足条件;
四面体D﹣A1BC1为每个面均为等边三角形的四面体,故(2)满足条件;
四面体D﹣B1C1D1为每个面都是直角三角形的四面体,故(3)满足条件;
四面体C﹣B1C1D1为有三个面是等腰直角三角形,有一个面是等边三角形的四面体,故(4)满足条件;
故正确的结论有4个
所以答案是:4

【考点精析】利用棱柱的结构特征对题目进行判断即可得到答案,需要熟知两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网