题目内容
7.在△ABC中,点M,N满足$\overrightarrow{AM}$=2$\overrightarrow{MC}$,$\overrightarrow{BN}$=$\overrightarrow{NC}$,若$\overrightarrow{MN}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,则x=$\frac{1}{2}$,y=-$\frac{1}{6}$.分析 首先利用向量的三角形法则,将所求用向量$\overrightarrow{AB},\overrightarrow{AC}$表示,然后利用平面向量基本定理得到x,y值.
解答 解:由已知得到$\overrightarrow{MN}=\overrightarrow{MC}+\overrightarrow{CN}$=$\frac{1}{3}\overrightarrow{AC}+\frac{1}{2}\overrightarrow{CB}$=$\frac{1}{3}\overrightarrow{AC}+\frac{1}{2}(\overrightarrow{AB}-\overrightarrow{AC})$=$\frac{1}{2}\overrightarrow{AB}-\frac{1}{6}\overrightarrow{AC}$;
由平面向量基本定理,得到x=$\frac{1}{2}$,y=$-\frac{1}{6}$;
故答案为:$\frac{1}{2},-\frac{1}{6}$.
点评 本题考查了平面向量基本定理的运用,一个向量用一组基底表示,存在唯一的实数对(x,y)使,向量等式成立.
练习册系列答案
相关题目
17.函数f(x)=Asin(?x+φ)(A>0,?>0)的一个最高点坐标为(2,2),相邻的对称轴与对称中心之间的距离为2,则f(2015)=( )
A. | 1 | B. | $\sqrt{2}$ | C. | -1 | D. | $-\sqrt{2}$ |
18.已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=$\frac{2π}{3}$时,函数f(x)取得最小值,则下列结论正确的是( )
A. | f(2)<f(-2)<f(0) | B. | f(0)<f(2)<f(-2) | C. | f(-2)<f(0)<f(2) | D. | f(2)<f(0)<f(-2) |
15.执行如图所示的程序框图,输出s的值为( )
A. | -$\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
2.某三棱锥的三视图如图所示,则该三棱锥的表面积是( )
A. | 2+$\sqrt{5}$ | B. | 4+$\sqrt{5}$ | C. | 2+2$\sqrt{5}$ | D. | 5 |
17.若空间中n个不同的点两两距离都相等,则正整数n的取值( )
A. | 至多等于3 | B. | 至多等于4 | C. | 等于5 | D. | 大于5 |