题目内容

(本题满分15分)

如图,已知椭圆的左、右顶点分别为AB,右焦点为F,直线l为椭圆的右准线,Nl上一动点,且在x轴上方,直线AN与椭圆交于点M

(1)若AM=MN,求∠AMB的余弦值;

(2)设过AFN三点的圆与y轴交于PQ两点,当

线段PQ的中点坐标为(0,9)时,求这个圆的方程.

(本题满分15分)

解:(1)由已知,,直线

N(8,t)(t>0),因为AM=MN,所以M(4,).

M在椭圆上,得t=6.故所求的点M的坐标为M(4,3).………………………4分

所以

.……………………………………7分

(用余弦定理也可求得)

(2)设圆的方程为,将AFN三点坐标代入,得

∵ 圆方程为,令,得.…11分

,则

由线段PQ的中点坐标为(0,9),得

此时所求圆的方程为.………………………………………15分

(本题用韦达定理也可解)

(2)(法二)由圆过点AF得圆心横坐标为-1,由圆与y轴交点的纵坐标为(0,9),

得圆心的纵坐标为9,故圆心坐标为(-1,9).…………………………………… 11分

易求得圆的半径为,………………………………………………………………13分

所以,所求圆的方程为.……………………………………… 15分

练习册系列答案
相关题目

((本题满分15分)
某有奖销售将商品的售价提高120元后允许顾客有3次抽奖的机会,每次抽奖的方法是在已经设置并打开了程序的电脑上按“Enter”键,电脑将随机产生一个                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1~6的整数数作为号码,若该号码是3的倍数则顾客获奖,每次中奖的奖金为100元,运用所学的知识说明这样的活动对商家是否有利。

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网