题目内容
【题目】如图,四棱锥中,底面ABCD为菱形,PA⊥平面ABCD,E为PD的中点.
(1)求证:PB∥平面AEC;
(2)求证:平面PAC⊥平面PBD;
(3)当PA=AB=2,∠ABC=时,求三棱锥的体积.
【答案】(1)证明见解析;(2)证明见解析;(3)
【解析】
(1)由中位线定理以及线面平行的判定定理证明即可;
(2)利用线面垂直的性质定理以及面面垂直的判定定理证明即可;
(3)利用三角形面积公式得出的面积,再由棱锥的体积公式求解即可.
(1)取AC、BD中点为O,连接EO.
证明:∵底面ABCD为菱形且O为AC、BD的交点
∴O为BD中点.∵E为PD中点,∴.
∵平面ABC,平面AEC,∴平面AEC.
(2)∵底面ABCD为菱形,∴.
∵平面ABCD,平面ABCD,∴.
∵,平面,∴平面PAC.
∵平面PBD,∴平面平面PBD.
(3)∵,∴
∵,∴.
∴.
.
练习册系列答案
相关题目