题目内容
直线AB过抛物线x2=2py(p>0)的焦点F,并与其相交于A、B两点,Q是线段AB的中点,M是抛物线的准线与y轴的交点,O是坐标原点.(Ⅰ)求
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_ST/0.png)
(Ⅱ)过A、B两点分别作此抛物线的切线,两切线相交于N点,求证:
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_ST/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_ST/3.png)
(Ⅲ)若p是不为1的正整数,当
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_ST/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_ST/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_ST/6.png)
【答案】分析:(Ⅰ)由条件得M(0,-
),F(0,
).设直线AB的方程为y=kx+
,A(x1,y1),B(x2,y2),则x12=2py1,x22=2py2,Q(
).由
得x2-2pkx-p2=0.由韦达定理能够推导出
•
的取值范围.
(Ⅱ)抛物线方程可化为
,求导得
.kNA=y
,kNB═y
.切线NA的方程为:y-
=
,切线NB的方程为:
.由
解得N(
,
),从而可知N点Q点的横坐标相同但纵坐标不同.由此能够证明
=0,
∥
.
(Ⅲ)由
.又根据
,知4p2=p2k2,而p>0,k2=4,k=±2.由
=(-pk,p),
=(x2-x1)(1,k),知
,从而
.由此能够求出抛物线的方程.
解答:解:(Ⅰ)由条件得M(0,-
),F(0,
).设直线AB的方程为
y=kx+
,A(x1,y1),B(x2,y2)
则x12=2py1,x22=2py2,Q(
).(2分)
由
得x2-2pkx-p2=0.
∴由韦达定理得x1+x2=2pk,x1•x2=-p2(3分)
从而有y1y2=
,y1+y2=k(x1+x2)+p=2pk2+p.
∴
•
的取值范围是[0,+∞).(4分)
(Ⅱ)抛物线方程可化为
,求导得
.
∴kNA=y
,kNB═y
.
∴切线NA的方程为:y-
=
即y=
.
切线NB的方程为:
(6分)
由
解得
∴N(
,
)
从而可知N点Q点的横坐标相同但纵坐标不同.
∴NQ∥OF.即
(7分)
又由(Ⅰ)知x1+x2=2pk,x1•x2=-p2,
∴N(pk,-
).(8分)
而M(0,-
)∴![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/49.png)
又
.∴
.(9分)
(Ⅲ)由
.又根据(Ⅰ)知![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/53.png)
∴4p2=p2k2,而p>0,∴k2=4,k=±2.(10分)
由于
=(-pk,p),
=(x2-x1)(1,k)
∴![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/56.png)
从而
.(11分)
又|
|=
,|
|=y1+y2+p=2pk2-2p=10p,
∴
.
而S△ABN的取值范围是[5
,20
].
∴5
≤5
,p2≤20
,1≤p2≤4.(13分)
而p>0,∴1≤p≤2.
又p是不为1的正整数.
∴p=2.
故抛物线的方程:x2=4y.(14分).
点评:本题考查数量积的取值范围、向量平行和垂直的证明、抛物线方程的求法,解题时要认真审题,注意韦达定理、导数性质、向量运算和距离公式的灵活运用.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/6.png)
(Ⅱ)抛物线方程可化为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/12.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/13.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/14.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/15.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/16.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/17.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/18.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/19.png)
(Ⅲ)由
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/20.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/21.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/22.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/23.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/24.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/25.png)
解答:解:(Ⅰ)由条件得M(0,-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/26.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/27.png)
y=kx+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/28.png)
则x12=2py1,x22=2py2,Q(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/29.png)
由
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/30.png)
∴由韦达定理得x1+x2=2pk,x1•x2=-p2(3分)
从而有y1y2=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/31.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/32.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/33.png)
(Ⅱ)抛物线方程可化为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/34.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/35.png)
∴kNA=y
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/36.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/37.png)
∴切线NA的方程为:y-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/38.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/39.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/40.png)
切线NB的方程为:
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/41.png)
由
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/42.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/43.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/44.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/45.png)
从而可知N点Q点的横坐标相同但纵坐标不同.
∴NQ∥OF.即
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/46.png)
又由(Ⅰ)知x1+x2=2pk,x1•x2=-p2,
∴N(pk,-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/47.png)
而M(0,-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/48.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/49.png)
又
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/50.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/51.png)
(Ⅲ)由
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/52.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/53.png)
∴4p2=p2k2,而p>0,∴k2=4,k=±2.(10分)
由于
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/54.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/55.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/56.png)
从而
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/57.png)
又|
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/58.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/59.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/60.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/61.png)
而S△ABN的取值范围是[5
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/62.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/63.png)
∴5
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/64.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/65.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182306911574269/SYS201310241823069115742020_DA/66.png)
而p>0,∴1≤p≤2.
又p是不为1的正整数.
∴p=2.
故抛物线的方程:x2=4y.(14分).
点评:本题考查数量积的取值范围、向量平行和垂直的证明、抛物线方程的求法,解题时要认真审题,注意韦达定理、导数性质、向量运算和距离公式的灵活运用.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目