ÌâÄ¿ÄÚÈÝ
Ö±ÏßAB¹ýÅ×ÎïÏßx2=2py£¨p£¾0£©µÄ½¹µãF£¬²¢ÓëÆäÏཻÓÚA¡¢BÁ½µã£¬QÊÇÏ߶ÎABµÄÖе㣬MÊÇÅ×ÎïÏßµÄ×¼ÏßÓëyÖáµÄ½»µã£¬OÊÇ×ø±êԵ㣮£¨¢ñ£©Çó
MA |
MB |
£¨¢ò£©¹ýA¡¢BÁ½µã·Ö±ð×÷´ËÅ×ÎïÏßµÄÇÐÏߣ¬Á½ÇÐÏßÏཻÓÚNµã£¬ÇóÖ¤£º
MN |
OF |
NQ |
OF |
£¨¢ó£©ÈôpÊDz»Îª1µÄÕýÕûÊý£¬µ±
MA |
MB |
5 |
5 |
·ÖÎö£º£¨¢ñ£©ÓÉÌõ¼þµÃM£¨0£¬-
£©£¬F£¨0£¬
£©£®ÉèÖ±ÏßABµÄ·½³ÌΪy=kx+
£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòx12=2py1£¬x22=2py2£¬Q£¨
£¬
£©£®ÓÉ
µÃx2-2pkx-p2=0£®ÓÉΤ´ï¶¨ÀíÄܹ»ÍƵ¼³ö
•
µÄÈ¡Öµ·¶Î§£®
£¨¢ò£©Å×ÎïÏß·½³Ì¿É»¯Îªy=
x2£¬Çóµ¼µÃy=
x£®kNA=y
£¬kNB¨Ty
£®ÇÐÏßNAµÄ·½³ÌΪ£ºy-
=
(x-x1)£¬ÇÐÏßNBµÄ·½³ÌΪ£ºy=
x-
£®ÓÉ
½âµÃN£¨
£¬
£©£¬´Ó¶ø¿ÉÖªNµãQµãµÄºá×ø±êÏàͬµ«×Ý×ø±ê²»Í¬£®ÓÉ´ËÄܹ»Ö¤Ã÷
•
=0£¬
¡Î
£®
£¨¢ó£©ÓÉ
•
=4p2£®ÓÖ¸ù¾Ý
•
=p2k2£¬Öª4p2=p2k2£¬¶øp£¾0£¬k2=4£¬k=¡À2£®ÓÉ
=£¨-pk£¬p£©£¬
=(x2-x1£¬y2-y1) =(x2-x1)(1+
=£¨x2-x1£©£¨1£¬k£©£¬Öª
•
=(-pk£¬p)(x2-x1) (1£¬k)=(x2-x1) (-pk-pk)=0£¬´Ó¶ø
¡Í
£®ÓÉ´ËÄܹ»Çó³öÅ×ÎïÏߵķ½³Ì£®
p |
2 |
p |
2 |
p |
2 |
x1+x2 |
2 |
y1+y2 |
2 |
|
MA |
MB |
£¨¢ò£©Å×ÎïÏß·½³Ì¿É»¯Îªy=
1 |
2p |
1 |
p |
x1 |
p |
x2 |
p |
x12 |
2p |
x1 |
p |
x2 |
p |
x22 |
2p |
|
x1+x2 |
2 |
x1x2 |
2p |
MN |
OF |
NQ |
OF |
£¨¢ó£©ÓÉ
MA |
MB |
MA |
MB |
NF |
AB |
x1+x2 ) |
2p |
NF |
AB |
NF |
AB |
½â´ð£º½â£º£¨¢ñ£©ÓÉÌõ¼þµÃM£¨0£¬-
£©£¬F£¨0£¬
£©£®ÉèÖ±ÏßABµÄ·½³ÌΪ
y=kx+
£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©
Ôòx12=2py1£¬x22=2py2£¬Q£¨
£¬
£©£®£¨2·Ö£©
ÓÉ
µÃx2-2pkx-p2=0£®
¡àÓÉΤ´ï¶¨ÀíµÃx1+x2=2pk£¬x1•x2=-p2£¨3·Ö£©
´Ó¶øÓÐy1y2=
=
£¬y1+y2=k£¨x1+x2£©+p=2pk2+p£®
¡à
•
µÄÈ¡Öµ·¶Î§ÊÇ[0£¬+¡Þ£©£®£¨4·Ö£©
£¨¢ò£©Å×ÎïÏß·½³Ì¿É»¯Îªy=
x2£¬Çóµ¼µÃy=
x£®
¡àkNA=y
£¬kNB¨Ty
£®
¡àÇÐÏßNAµÄ·½³ÌΪ£ºy-
=
(x-x1)¼´y=
x-
£®
ÇÐÏßNBµÄ·½³ÌΪ£ºy=
x-
£¨6·Ö£©
ÓÉ
½âµÃ
¡àN£¨
£¬
£©
´Ó¶ø¿ÉÖªNµãQµãµÄºá×ø±êÏàͬµ«×Ý×ø±ê²»Í¬£®
¡àNQ¡ÎOF£®¼´
¡Î
£¨7·Ö£©
ÓÖÓÉ£¨¢ñ£©Öªx1+x2=2pk£¬x1•x2=-p2£¬
¡àN£¨pk£¬-
£©£®£¨8·Ö£©
¶øM£¨0£¬-
£©¡à
=(pk£¬0)
ÓÖ
=(0£¬
)£®¡à
•
=0£®£¨9·Ö£©
£¨¢ó£©ÓÉ
•
=4p2£®ÓÖ¸ù¾Ý£¨¢ñ£©Öª
•
=p2k2
¡à4p2=p2k2£¬¶øp£¾0£¬¡àk2=4£¬k=¡À2£®£¨10·Ö£©
ÓÉÓÚ
=£¨-pk£¬p£©£¬
=(x2-x1£¬y2-y1) =(x2-x1)(1+
=£¨x2-x1£©£¨1£¬k£©
¡à
•
=(-pk£¬p)(x2-x1) (1£¬k)=(x2-x1) (-pk-pk)=0
´Ó¶ø
¡Í
£®£¨11·Ö£©
ÓÖ|
|=
=
p£¬|
|=y1+y2+p=2pk2-2p=10p£¬
¡àS¡÷ABN=
|NF||AB|=
¡Á
p¡Á10p=5
p2£®
¶øS¡÷ABNµÄÈ¡Öµ·¶Î§ÊÇ[5
£¬20
]£®
¡à5
¡Ü5
£¬p2¡Ü20
£¬1¡Üp2¡Ü4£®£¨13·Ö£©
¶øp£¾0£¬¡à1¡Üp¡Ü2£®
ÓÖpÊDz»Îª1µÄÕýÕûÊý£®
¡àp=2£®
¹ÊÅ×ÎïÏߵķ½³Ì£ºx2=4y£®£¨14·Ö£©£®
p |
2 |
p |
2 |
y=kx+
p |
2 |
Ôòx12=2py1£¬x22=2py2£¬Q£¨
x1+x2 |
2 |
y1+y2 |
2 |
ÓÉ
|
¡àÓÉΤ´ï¶¨ÀíµÃx1+x2=2pk£¬x1•x2=-p2£¨3·Ö£©
´Ó¶øÓÐy1y2=
x12x22 |
4p2 |
p2 |
4 |
¡à
MA |
MB |
£¨¢ò£©Å×ÎïÏß·½³Ì¿É»¯Îªy=
1 |
2p |
1 |
p |
¡àkNA=y
x1 |
p |
x2 |
p |
¡àÇÐÏßNAµÄ·½³ÌΪ£ºy-
x12 |
2p |
x1 |
p |
x1 |
p |
x12 |
2p |
ÇÐÏßNBµÄ·½³ÌΪ£ºy=
x2 |
p |
x22 |
2p |
ÓÉ
|
|
x1+x2 |
2 |
x1x2 |
2p |
´Ó¶ø¿ÉÖªNµãQµãµÄºá×ø±êÏàͬµ«×Ý×ø±ê²»Í¬£®
¡àNQ¡ÎOF£®¼´
NQ |
OF |
ÓÖÓÉ£¨¢ñ£©Öªx1+x2=2pk£¬x1•x2=-p2£¬
¡àN£¨pk£¬-
p |
2 |
¶øM£¨0£¬-
p |
2 |
MN |
ÓÖ
OF |
p |
2 |
MN |
OF |
£¨¢ó£©ÓÉ
MA |
MB |
MA |
MB |
¡à4p2=p2k2£¬¶øp£¾0£¬¡àk2=4£¬k=¡À2£®£¨10·Ö£©
ÓÉÓÚ
NF |
AB |
x1+x2 ) |
2p |
¡à
NF |
AB |
´Ó¶ø
NF |
AB |
ÓÖ|
NF |
p2k2+p2 |
5 |
AB |
¡àS¡÷ABN=
1 |
2 |
1 |
2 |
5 |
5 |
¶øS¡÷ABNµÄÈ¡Öµ·¶Î§ÊÇ[5
5 |
5 |
¡à5
5 |
5 |
5 |
¶øp£¾0£¬¡à1¡Üp¡Ü2£®
ÓÖpÊDz»Îª1µÄÕýÕûÊý£®
¡àp=2£®
¹ÊÅ×ÎïÏߵķ½³Ì£ºx2=4y£®£¨14·Ö£©£®
µãÆÀ£º±¾Ì⿼²éÊýÁ¿»ýµÄÈ¡Öµ·¶Î§¡¢ÏòÁ¿Æ½Ðкʹ¹Ö±µÄÖ¤Ã÷¡¢Å×ÎïÏß·½³ÌµÄÇ󷨣¬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâΤ´ï¶¨Àí¡¢µ¼ÊýÐÔÖÊ¡¢ÏòÁ¿ÔËËãºÍ¾àÀ빫ʽµÄÁé»îÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿