ÌâÄ¿ÄÚÈÝ
ÒÑÖª£¬ÊýÁÐ{an}ÓÐa1=a£¬a2=p£¨³£Êýp£¾0£©£¬¶ÔÈÎÒâµÄÕýÕûÊýn£¬Sn=a1+a2+¡+an£¬²¢ÓÐSnÂú×ãSn=
£®
£¨1£©ÇóaµÄÖµ£»
£¨2£©ÊÔÈ·¶¨ÊýÁÐ{an}ÊDz»ÊǵȲîÊýÁУ¬ÈôÊÇ£¬Çó³öÆäͨÏʽ£®Èô²»ÊÇ£¬ËµÃ÷ÀíÓÉ£»
£¨3£©Áîpn=
+
£¬ÊÇ·ñ´æÔÚÕýÕûÊýM£¬Ê¹²»µÈʽp1+p2+¡+pn-2n¡ÜMºã³ÉÁ¢£¬Èô´æÔÚ£¬Çó³öMµÄ×îСֵ£¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
n(an-a1) |
2 |
£¨1£©ÇóaµÄÖµ£»
£¨2£©ÊÔÈ·¶¨ÊýÁÐ{an}ÊDz»ÊǵȲîÊýÁУ¬ÈôÊÇ£¬Çó³öÆäͨÏʽ£®Èô²»ÊÇ£¬ËµÃ÷ÀíÓÉ£»
£¨3£©Áîpn=
Sn+2 |
Sn+1 |
Sn+1 |
Sn+2 |
·ÖÎö£º£¨1£©ÓÉ a=a1=s1 ºÍ Sn=
¿ÉµÃ a µÄÖµ£®
£¨2£©ÏÈÇó³ö Sn£¬¿ÉµÃ Sn-1£¬¸ù¾ÝSn-Sn-1=an£¬»¯¼ò¿ÉµÃ
=
£¬an =k£¨n-1£©£¬¹ÊÊýÁÐ{an}ÊǵȲîÊýÁУ®ÓÉa2 =p=k•£¨2-1£©£¬Çó³ö k Öµ£¬µÃµ½an =p£¨n-1£©=£¨n-1£©p£®
£¨3£©¸ù¾Ý¶¨ÒåÏȱíʾ³öp1+p2+¡+pn-2n=2+1-
-
£¬ÔÙÇóÆäÉϱ߽缴¿É£®
n(an-a1) |
2 |
£¨2£©ÏÈÇó³ö Sn£¬¿ÉµÃ Sn-1£¬¸ù¾ÝSn-Sn-1=an£¬»¯¼ò¿ÉµÃ
an |
an-1 |
n-1 |
n-2 |
£¨3£©¸ù¾Ý¶¨ÒåÏȱíʾ³öp1+p2+¡+pn-2n=2+1-
2 |
n+1 |
2 |
n+2 |
½â´ð£º½â£º£¨1£©ÓÉÒÑÖª£¬µÃs1=
=a1=a£¬¡àa=0
£¨2£©ÓÉa1=0µÃSn=
£¬ÔòSn+1=
£¬
¡à2£¨Sn+1-Sn£©=£¨n+1£©an+1-nan£¬¼´2an+1=£¨n+1£©an+1-nan£¬
ÓÚÊÇÓУ¨n-1£©an+1=nan£¬²¢ÇÒÓÐnan+2=£¨n+1£©an+1£¬
¡ànan+2-£¨n-1£©an+1=£¨n+1£©an+1-nan£¬¼´n£¨an+2-an+1£©=n£¨an+1-an£©£¬
¶ønÊÇÕýÕûÊý£¬Ôò¶ÔÈÎÒân¡ÊN¶¼ÓÐan+2-an+1=an+1-an£¬
¡àÊýÁÐ{an}ÊǵȲîÊýÁУ¬ÆäͨÏʽÊÇan=£¨n-1£©p£®
£¨3£©¡ßSn=
¡àpn=
+
=2+
-
¡àp1+p2+p3+¡+pn-2n=(2+
-
)+(2+
-
)+¡+(2+
-
)-2n
=2+1-
-
£»
ÓÉnÊÇÕýÕûÊý¿ÉµÃp1+p2+¡+pn-2n£¼3£¬
¹Ê´æÔÚ×îСµÄÕýÕûÊýM=3£¬Ê¹²»µÈʽp1+p2+¡+pn-2n¡ÜMºã³ÉÁ¢£®
1•(a-a) |
2 |
£¨2£©ÓÉa1=0µÃSn=
nan |
2 |
(n+1)an+1 |
2 |
¡à2£¨Sn+1-Sn£©=£¨n+1£©an+1-nan£¬¼´2an+1=£¨n+1£©an+1-nan£¬
ÓÚÊÇÓУ¨n-1£©an+1=nan£¬²¢ÇÒÓÐnan+2=£¨n+1£©an+1£¬
¡ànan+2-£¨n-1£©an+1=£¨n+1£©an+1-nan£¬¼´n£¨an+2-an+1£©=n£¨an+1-an£©£¬
¶ønÊÇÕýÕûÊý£¬Ôò¶ÔÈÎÒân¡ÊN¶¼ÓÐan+2-an+1=an+1-an£¬
¡àÊýÁÐ{an}ÊǵȲîÊýÁУ¬ÆäͨÏʽÊÇan=£¨n-1£©p£®
£¨3£©¡ßSn=
n(n-1)p |
2 |
| ||
|
| ||
|
2 |
n |
2 |
n+2 |
¡àp1+p2+p3+¡+pn-2n=(2+
2 |
1 |
2 |
3 |
2 |
2 |
2 |
4 |
2 |
n |
2 |
n+2 |
=2+1-
2 |
n+1 |
2 |
n+2 |
ÓÉnÊÇÕýÕûÊý¿ÉµÃp1+p2+¡+pn-2n£¼3£¬
¹Ê´æÔÚ×îСµÄÕýÕûÊýM=3£¬Ê¹²»µÈʽp1+p2+¡+pn-2n¡ÜMºã³ÉÁ¢£®
µãÆÀ£º±¾Ì⿼²éÊýÁеÄ×ÛºÏÎÊÌ⣬¿¼²éÊýÁеĵÝÍƹØϵÓëͨÏʽ֮¼äµÄ¹Øϵ£¬¿¼²éѧÉú̽¾¿ÐÔÎÊÌâµÄ½â¾ö·½·¨£¬×¢ÒâÌåÏÖת»¯Ó뻯¹é˼ÏëµÄÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿