ÌâÄ¿ÄÚÈÝ

ÒÑÖª£¬ÊýÁÐ{an}ÓÐa1=a£¬a2=p£¨³£Êýp£¾0£©£¬¶ÔÈÎÒâµÄÕýÕûÊýn£¬Sn=a1+a2+¡­+an£¬²¢ÓÐSnÂú×ãSn=
n(an-a1)
2
£®
£¨1£©ÇóaµÄÖµ£»
£¨2£©ÊÔÈ·¶¨ÊýÁÐ{an}ÊDz»ÊǵȲîÊýÁУ¬ÈôÊÇ£¬Çó³öÆäͨÏʽ£®Èô²»ÊÇ£¬ËµÃ÷ÀíÓÉ£»
£¨3£©Áîpn=
Sn+2
Sn+1
+
Sn+1
Sn+2
£¬ÊÇ·ñ´æÔÚÕýÕûÊýM£¬Ê¹²»µÈʽp1+p2+¡­+pn-2n¡ÜMºã³ÉÁ¢£¬Èô´æÔÚ£¬Çó³öMµÄ×îСֵ£¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÓÉ a=a1=s1 ºÍ Sn=
n(an-a1)
2
 ¿ÉµÃ a µÄÖµ£®
£¨2£©ÏÈÇó³ö Sn£¬¿ÉµÃ Sn-1£¬¸ù¾ÝSn-Sn-1=an£¬»¯¼ò¿ÉµÃ 
an
an-1
=
n-1
n-2
£¬an =k£¨n-1£©£¬¹ÊÊýÁÐ{an}ÊǵȲîÊýÁУ®ÓÉa2 =p=k•£¨2-1£©£¬Çó³ö k Öµ£¬µÃµ½an =p£¨n-1£©=£¨n-1£©p£®
£¨3£©¸ù¾Ý¶¨ÒåÏȱíʾ³öp1+p2+¡­+pn-2n=2+1-
2
n+1
-
2
n+2
£¬ÔÙÇóÆäÉϱ߽缴¿É£®
½â´ð£º½â£º£¨1£©ÓÉÒÑÖª£¬µÃs1=
1•(a-a)
2
=a1=a
£¬¡àa=0
£¨2£©ÓÉa1=0µÃSn=
nan
2
£¬ÔòSn+1=
(n+1)an+1
2
£¬
¡à2£¨Sn+1-Sn£©=£¨n+1£©an+1-nan£¬¼´2an+1=£¨n+1£©an+1-nan£¬
ÓÚÊÇÓУ¨n-1£©an+1=nan£¬²¢ÇÒÓÐnan+2=£¨n+1£©an+1£¬
¡ànan+2-£¨n-1£©an+1=£¨n+1£©an+1-nan£¬¼´n£¨an+2-an+1£©=n£¨an+1-an£©£¬
¶ønÊÇÕýÕûÊý£¬Ôò¶ÔÈÎÒân¡ÊN¶¼ÓÐan+2-an+1=an+1-an£¬
¡àÊýÁÐ{an}ÊǵȲîÊýÁУ¬ÆäͨÏʽÊÇan=£¨n-1£©p£®
£¨3£©¡ßSn=
n(n-1)p
2
¡àpn=
(n+2)(n+1)p
2
(n+1)np
2
+
(n+1)np
2
(n+2)(n+1)p
2
=2+
2
n
-
2
n+2

¡àp1+p2+p3+¡­+pn-2n=(2+
2
1
-
2
3
)+(2+
2
2
-
2
4
)+¡­+(2+
2
n
-
2
n+2
)-2n

=2+1-
2
n+1
-
2
n+2
£»
ÓÉnÊÇÕýÕûÊý¿ÉµÃp1+p2+¡­+pn-2n£¼3£¬
¹Ê´æÔÚ×îСµÄÕýÕûÊýM=3£¬Ê¹²»µÈʽp1+p2+¡­+pn-2n¡ÜMºã³ÉÁ¢£®
µãÆÀ£º±¾Ì⿼²éÊýÁеÄ×ÛºÏÎÊÌ⣬¿¼²éÊýÁеĵÝÍƹØϵÓëͨÏʽ֮¼äµÄ¹Øϵ£¬¿¼²éѧÉú̽¾¿ÐÔÎÊÌâµÄ½â¾ö·½·¨£¬×¢ÒâÌåÏÖת»¯Ó뻯¹é˼ÏëµÄÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø