题目内容
(2008•南汇区一模)已知,数列{an}有a1=a,a2=2,对任意的正整数n,Sn=a1+a2+…+an,并有Sn满足Sn=
.
(1)求a的值;
(2)求证数列{an}是等差数列;
(3)对于数列{bn},假如存在一个常数b使得对任意的正整数n都有bn<b且
bn=b,则称b为数列{bn}的“上渐进值”,令pn=
+
,求数列{p1+p2+…+pn-2n}的“上渐进值”.
n(an-a1) |
2 |
(1)求a的值;
(2)求证数列{an}是等差数列;
(3)对于数列{bn},假如存在一个常数b使得对任意的正整数n都有bn<b且
lim |
n→∞ |
Sn+2 |
Sn+1 |
Sn+1 |
Sn+2 |
分析:(1)利用s1=a1,分别代入可求a的值;
(2)欲证数列{an}是等差数列,只需证明an+2-an+1=an+1-an,利用Sn=
可证;
(3)根据定义先表示出p1+p2+…+pn-2n=2+1-
-
,再求其极限即可.
(2)欲证数列{an}是等差数列,只需证明an+2-an+1=an+1-an,利用Sn=
n(an-a1) |
2 |
(3)根据定义先表示出p1+p2+…+pn-2n=2+1-
2 |
n+1 |
2 |
n+2 |
解答:解:(1)由已知,得s1=
=a1=a,∴a=0…(4分)
(2)由a1=0得Sn=
,则Sn+1=
,
∴2(Sn+1-Sn)=(n+1)an+1-nan,即2an+1=(n+1)an+1-nan,
于是有(n-1)an+1=nan,并且有nan+2=(n+1)an+1,
∴nan+2-(n-1)an+1=(n+1)an+1-nan,即n(an+2-an+1)=n(an+1-an),
而n是正整数,则对任意n∈N都有an+2-an+1=an+1-an,
∴数列{an}是等差数列,其通项公式是an=2(n-1).…(10分)
(3)∵Sn=
=n(n-1)∴pn=
+
=2+
-
∴p1+p2+p3+…+pn-2n=(2+
-
)+(2+
-
)+…+(2+
-
)-2n=2+1-
-
;由n是正整数可得p1+p2+…+pn-2n<3,
并且有
(p1+p2+…+pn-2n)=3,
∴数列{p1+p2+…+pn-2n}的“上渐进值”等于3.…(18分)
1•(a-a) |
2 |
(2)由a1=0得Sn=
nan |
2 |
(n+1)an+1 |
2 |
∴2(Sn+1-Sn)=(n+1)an+1-nan,即2an+1=(n+1)an+1-nan,
于是有(n-1)an+1=nan,并且有nan+2=(n+1)an+1,
∴nan+2-(n-1)an+1=(n+1)an+1-nan,即n(an+2-an+1)=n(an+1-an),
而n是正整数,则对任意n∈N都有an+2-an+1=an+1-an,
∴数列{an}是等差数列,其通项公式是an=2(n-1).…(10分)
(3)∵Sn=
n(n-1)•2 |
2 |
(n+2)(n+1) |
(n+1)n |
(n+1)n |
(n+2)(n+1) |
2 |
n |
2 |
n+2 |
∴p1+p2+p3+…+pn-2n=(2+
2 |
1 |
2 |
3 |
2 |
2 |
2 |
4 |
2 |
n |
2 |
n+2 |
2 |
n+1 |
2 |
n+2 |
并且有
lim |
n→∞ |
∴数列{p1+p2+…+pn-2n}的“上渐进值”等于3.…(18分)
点评:本题的考点是等差数列的确定,考查数列的综合问题,考查数列的递推关系与通项公式之间的关系,考查学生探究性问题的解决方法,注意体现转化与化归思想的运用,考查学生分析问题解决问题的能力和意识.
练习册系列答案
相关题目