题目内容
【题目】已知函数f(x)=(x-k)ex,
(1)求f(x)的单调区间;
(2)求f(x)在区间[0,1]上的最小值.
【答案】(1)f(x)的单调递减区间是(-∞,k-1);单调递增区间是(k-1,+∞);
(2)最小值为f(1)=(1-k)e
【解析】试题分析:(1)f′(x)=(x﹣k+1)ex,令f′(x)=0,得x=k﹣1.由此能求出f(x)的单调区间.
(2)当k﹣1≤0时,函数f(x)在区间[0,1]上递增,f(x)min=f(0)=﹣k;当1<k≤2时,函数f(x)在区间[0,k﹣1]上递减,(k﹣1,1]上递增,;当k>2时,函数f(x)在区间[0,1]上递减,f(x)min=f(1)=(1﹣k)e.
试题解析:
解:(1)f′(x)=(x-k+1)ex.
令f′(x)=0,得x=k-1.
当x变化时,f(x)与f′(x)的变化情况如下:
x | (-∞,k-1) | (k-1) | (k-1,+∞) |
f′(x) | - | 0 | + |
f(x) | -ek-1 |
所以,f(x)的单调递减区间是(-∞,k-1);单调递增区间是(k-1,+∞).
(2)当k-1≤0,即k≤1时,函数f(x)在[0,1]上单调递增,
所以f(x)在区间[0,1]上的最小值为f(0)=-k.
当0<k-1<1,即1<k<2时,
由(1)知f(x)在[0,k-1)上单调递减,在(k-1,1]上单调递增,所以f(x)在区间[0,1]上的最小值为
f(k-1)=-ek-1.
当k-1≥1,即k≥2时,函数f(x)在[0,1]上单调递减,
所以f(x)在区间[0,1]上的最小值为f(1)=(1-k)e.
练习册系列答案
相关题目