题目内容
【题目】已知函数在点处的切线方程为.
(1)求、;
(2)设曲线与轴负半轴的交点为点,曲线在点处的切线方程为,求证:对于任意的实数,都有;
(3)若关于的方程有两个实数根,,且,证明:.
【答案】(1);(2)证明见解析;(3)证明见解析.
【解析】
(1)将点代入切线方程得出,并求出函数的导数,由求出、的值;
(2)求出点的坐标,并利用导数求出函数在点处切线对应的函数,然后构造函数,利用导数证明出;
(3)求出方程的根,利用函数的单调性证明出,设函数在原点处的切线对应的函数为,易得的根为,由函数的单调性得出,再利用不等式的性质可证明结论成立.
(1)将代入切线方程中,有,
所以,即,
又,所以,
若,则,与矛盾,故;
(2)由(1)可知,令,有或,
故曲线与轴负半轴的唯一交点为.
曲线在点处的切线方程为,则,
令,则,
所以,.
当时,若,,
若,,在上单调递增,,故,在上单调递减,
当时,由知在时单调递增,,函数在上单调递增.
所以,即成立;
(3),设的根为,则,
又单调递减,且,所以,
设曲线在点处的切线方程为,有,
令,,
当时,,
当时,,
故函数在上单调递增,又,
所以当时,,当时,,
所以函数在区间上单调递减,在区间上单调递增,
所以,即,
设的根为,则,
又函数单调递增,故,故.
又,所以.
【题目】一商场对每天进店人数和商品销售件数进行了统计对比,得到如下表格:
人数 | 10 | 15 | 20 | 25 | 30 | 35 | 40 |
件数 | 4 | 7 | 12 | 15 | 20 | 23 | 27 |
(1)在答题卡给定的坐标系中画出表中数据的散点图,并由散点图判断销售件数与进店人数是否线性相关?(给出判断即可,不必说明理由);
(2)建立关于的回归方程(系数精确到0.01),预测进店人数为80时,商品销售的件数(结果保留整数).
(参考数据:,,,,,)
参考公式:,,其中,为数据的平均数.
【题目】大学先修课程,是在高中开设的具有大学水平的课程,旨在让学有余力的高中生早接受大学思维方式、学习方法的训练,为大学学习乃至未来的职业生涯做好准备.某高中成功开设大学先修课程已有两年,共有250人参与学习先修课程.
(Ⅰ)这两年学校共培养出优等生150人,根据下图等高条形图,填写相应列联表,并根据列联表检验能否在犯错的概率不超过0.01的前提下认为学习先修课程与优等生有关系?
优等生 | 非优等生 | 总计 | |
学习大学先修课程 | 250 | ||
没有学习大学先修课程 | |||
总计 | 150 |
(Ⅱ)某班有5名优等生,其中有2名参加了大学生先修课程的学习,在这5名优等生中任选3人进行测试,求这3人中至少有1名参加了大学先修课程学习的概率.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
参考公式:,其中
【题目】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:
质量指标值分组 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
频数 | 6 | 26 | 38 | 22 | 8 |
(I)在答题卡上作出这些数据的频率分布直方图:
(II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);
(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?