题目内容

18.已知sinα+cosα=$\frac{1}{5}$,α∈(0,π),求sinα-cosα及tanα的值.

分析 把已知等式两边平方,利用完全平方公式及同角三角函数间的基本关系变形求出2sinαcosα的值,进而判断出sinα-cosα的正负,利用完全平方公式及同角三角函数间的基本关系求出sinα-cosα的值,联立求出sinα与cosα的值,即可确定出tanα的值.

解答 解:把sinα+cosα=$\frac{1}{5}$①,两边平方得:(sinα+cosα)2=1+2sinαcosα=$\frac{1}{25}$,
∴2sinαcosα=-$\frac{24}{25}$,
∵α∈(0,π),
∴sinα>0,cosα<0,即sinα-cosα>0,
∴(sinα-cosα)2=1-2sinαcosα=$\frac{49}{25}$,即sinα-cosα=$\frac{7}{5}$②,
联立①②,解得:sinα=$\frac{4}{5}$,cosα=-$\frac{3}{5}$,
则tanα=-$\frac{4}{3}$.

点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网