题目内容
12.经过点A(-2,-4)且与直线2x-y-10=0相切于点B(8,6)的圆的方程为x2+y2-11x+3y-30=0.分析 由已知中圆经过点A(-2,-4),且与直线l:2x-y-10=0相切于(8,6),我们可以设出圆的方程,然后将两点坐标代入结合圆心到直线l的距离等于半径,构造方程组,解方程组即可求出圆的方程.
解答 解:设圆为x2+y2+Dx+Ey+F=0,
连接切点与圆心的直线和半径垂直,得3D-E+36=0,
又20-2D-4E+F=0,100+8D+6E+F=0,
∴D=-11,E=3,F=-30.
∴圆的方程为x2+y2-11x+3y-30=0.
故答案为:x2+y2-11x+3y-30=0.
点评 本题考查的知识点是直线与圆的位置关系,其中根据圆过已知的两个点,及与直线相切,构造方程组是解答本题的关键.
练习册系列答案
相关题目
1.“ALS冰桶挑战赛”是一项社交网络上发起的筹款活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.为了解冰桶挑战赛与受邀者的性别是否有关,某调查机构进行了随机抽样调查,调查得到如下2×2列联表:
(1)请将上面的列联表补充完整.
(2)根据表中数据,能否在犯错误的概率不超过0.1的前提下认为“冰桶挑战赛与受邀者的性别有关”?
附:${{K}^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
男性 | 女性 | 合计 | |
接受挑战 | 16 | ||
不接受挑战 | 6 | ||
合计 | 30 | 40 |
(2)根据表中数据,能否在犯错误的概率不超过0.1的前提下认为“冰桶挑战赛与受邀者的性别有关”?
附:${{K}^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P( K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |