题目内容
设函数在处取得极值,且曲线在点处的切线垂直于直线.
(1)求的值;
(2)若函数,讨论的单调性.
【答案】
(1)a=1,b=0;(2)见解析.
【解析】
试题分析:(1)根据极值点,求导后可得,由在点处的切线垂直于直线可知该切线斜率为2.可得 ;(2)对 求导后对 的根的情况进行分类讨论即可.
试题解析:(1)因,又在x=0处取得极限值,故从而 ,由曲线y=在处的切线与直线相互垂直可知该切线斜率为2,即.
(2)由(Ⅰ)知,,.
令.
①当;
②当,g(x)在R上为增函数;
③方程有两个不相等实根,
当函数;
当时,故上为减函数;
当时,故上为增函数.
考点:1.导数在切线中的运用;2.导数求函数的单调性;3.分类讨论思想的运用.
练习册系列答案
相关题目