题目内容
设函数在处取得极值,则的值为( )
A. B. C. D.4
A.
【解析】因为,所以。
已知函数,且
(1) 试用含的代数式表示b,并求的单调区间;
(2)令,设函数在处取得极值,记点M (,),N(,),P(), ,请仔细观察曲线在点P处的切线与线段MP的位置变化趋势,并解释以下问题:
(I)若对任意的m (, x),线段MP与曲线f(x)均有异于M,P的公共点,试确定t的最小值,并证明你的结论;
(II)若存在点Q(n ,f(n)), x n< m,使得线段PQ与曲线f(x)有异于P、Q的公共点,请直接写出m的取值范围(不必给出求解过程)
已知函数且
(Ⅰ)试用含的代数式表示;
(Ⅱ)求的单调区间;
(Ⅲ)令,设函数在处取得极值,记点,证明:线段与曲线存在异于、的公共点;
设函数在处取得极值,且曲线在点处的切线垂直于直线,则的值为 .
设函数在处取得极值,则的值为()
A.1 B.3 C.0 D.2