题目内容
【题目】已知奇函数f(x)在R上是增函数.若a=﹣f( ),b=f(log24.1),c=f(20.8),则a,b,c的大小关系为( )
A.a<b<c
B.b<a<c
C.c<b<a
D.c<a<b
【答案】C
【解析】解:奇函数f(x)在R上是增函数,
∴a=﹣f( )=f(log25),
b=f(log24.1),
c=f(20.8),
又1<20.8<2<log24.1<log25,
∴f(20.8)<f(log24.1)<f(log25),
即c<b<a.
故选:C.
【考点精析】关于本题考查的奇偶性与单调性的综合和指数函数的图像与性质,需要了解奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性;a0=1, 即x=0时,y=1,图象都经过(0,1)点;ax=a,即x=1时,y等于底数a;在0<a<1时:x<0时,ax>1,x>0时,0<ax<1;在a>1时:x<0时,0<ax<1,x>0时,ax>1才能得出正确答案.
【题目】近年来,武汉市出现了非常严重的雾霾天气,而燃放烟花爆竹会加重雾霾,是否应该全面禁放烟花爆竹已成为人们议论的一个话题.武汉市环保部门就是否赞成禁放烟花爆竹,对400位老年人和中青年市民进行了随机问卷调查,结果如下表:
赞成禁放 | 不赞成禁放 | 合计 | |
老年人 | 60 | 140 | 200 |
中青年人 | 80 | 120 | 200 |
合计 | 140 | 260 | 400 |
附:K2=
P(k2>k0) | 0.050 | 0.025 | 0.010 |
k0 | 3.841 | 5.024 | 6.635 |
(1)有多大的把握认为“是否赞成禁放烟花爆竹”与“年龄结构”有关?请说明理由;
(2)从上述不赞成禁放烟花爆竹的市民中按年龄结构分层抽样出13人,再从这13人中随机的挑选2人,了解他们春节期间在烟花爆竹上消费的情况.假设一位老年人花费500元,一位中青年人花费1000元,用X表示它们在烟花爆竹上消费的总费用,求X的分布列和数学期望.
【题目】电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:
连续剧播放时长(分钟) | 广告播放时长(分钟) | 收视人次(万) | |
甲 | 70 | 5 | 60 |
乙 | 60 | 5 | 25 |
已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x,y表示每周计划播出的甲、乙两套连续剧的次数.(13分)
(I)用x,y列出满足题目条件的数学关系式,并画出相应的平面区域;
(II)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?