ÌâÄ¿ÄÚÈÝ
É躯Êýf£¨x£©=a2x2£¨a£¾0£©£¬g£¨x£©=blnx£®
£¨1£©½«º¯Êýy=f£¨x£©Í¼ÏóÏòÓÒƽÒÆÒ»¸öµ¥Î»¼´¿ÉµÃµ½º¯Êýy=¦Õ£¨x£©µÄͼÏó£¬ÊÔд³öy=¦Õ£¨x£©µÄ½âÎöʽ¼°ÖµÓò£»
£¨2£©¹ØÓÚxµÄ²»µÈʽ£¨x-1£©2£¾f£¨x£©µÄ½â¼¯ÖеÄÕûÊýÇ¡ÓÐ3¸ö£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨3£©¶ÔÓÚº¯Êýf£¨x£©Óëg£¨x£©¶¨ÒåÓòÉϵÄÈÎÒâʵÊýx£¬Èô´æÔÚ³£Êýk£¬m£¬Ê¹µÃf£¨x£©¡Ýkx+mºÍg£¨x£©¡Ükx+m¶¼³ÉÁ¢£¬Ôò³ÆÖ±Ïßy=kx+mΪº¯Êýf£¨x£©Óëg£¨x£©µÄ¡°·Ö½çÏß¡±£®Éèa=
£¬b=e£¬ÊÔ̽¾¿f£¨x£©Óëg£¨x£©ÊÇ·ñ´æÔÚ¡°·Ö½çÏß¡±£¿Èô´æÔÚ£¬Çó³ö¡°·Ö½çÏß¡±µÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨1£©½«º¯Êýy=f£¨x£©Í¼ÏóÏòÓÒƽÒÆÒ»¸öµ¥Î»¼´¿ÉµÃµ½º¯Êýy=¦Õ£¨x£©µÄͼÏó£¬ÊÔд³öy=¦Õ£¨x£©µÄ½âÎöʽ¼°ÖµÓò£»
£¨2£©¹ØÓÚxµÄ²»µÈʽ£¨x-1£©2£¾f£¨x£©µÄ½â¼¯ÖеÄÕûÊýÇ¡ÓÐ3¸ö£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨3£©¶ÔÓÚº¯Êýf£¨x£©Óëg£¨x£©¶¨ÒåÓòÉϵÄÈÎÒâʵÊýx£¬Èô´æÔÚ³£Êýk£¬m£¬Ê¹µÃf£¨x£©¡Ýkx+mºÍg£¨x£©¡Ükx+m¶¼³ÉÁ¢£¬Ôò³ÆÖ±Ïßy=kx+mΪº¯Êýf£¨x£©Óëg£¨x£©µÄ¡°·Ö½çÏß¡±£®Éèa=
| ||
2 |
·ÖÎö£º£¨1£©Óɺ¯ÊýͼÏóµÄ±ä»»¿ÉµÃ ¦Õ£¨x£©=a2 £¨x-1£©2 £¬ÖµÓòΪ[0£¬+¡Þ£©£®
£¨2£©ÓÉÌâÒâ¿ÉµÃ£¨1-a2£© x2-2x+1£¾0 Ç¡ÓÐÈý¸öÕûÊý½â£¬¹Ê 1-a2£¼0£¬ÔÙÓÉ£¨1-a2£© x2-2x+1£¾0£¬ÇóµÃʵÊýaµÄ
È¡Öµ·¶Î§£®
£¨3£©ÉèF£¨x£©=f£¨x£©-g£¨x£©=
x2-elnx£¬ÀûÓõ¼Êý֪ʶÅжϵ¥µ÷ÐÔ£¬Çó³ö x=
ʱ£¬F£¨x£© È¡µÃ×îСֵ0£®
Éèf£¨x£©Óëg£¨x£©´æÔÚ¡°·Ö½çÏß¡±£¬·½³ÌΪ y=kx+
-k
£¬ÓÉ f£¨x£©¡Ýkx+
-k
£¬¶Ôx¡ÊRºã³ÉÁ¢£¬ÇóµÃk=
£®
ÔÙÀûÓõ¼ÊýÖ¤Ã÷g£¨x£©¡Ü
x-
£¨x£¾0£©ºã³ÉÁ¢£¬´Ó¶øµÃµ½ËùÇó¡°·Ö½çÏß¡±·½³Ì£®
£¨2£©ÓÉÌâÒâ¿ÉµÃ£¨1-a2£© x2-2x+1£¾0 Ç¡ÓÐÈý¸öÕûÊý½â£¬¹Ê 1-a2£¼0£¬ÔÙÓÉ£¨1-a2£© x2-2x+1£¾0£¬ÇóµÃʵÊýaµÄ
È¡Öµ·¶Î§£®
£¨3£©ÉèF£¨x£©=f£¨x£©-g£¨x£©=
1 |
2 |
e |
Éèf£¨x£©Óëg£¨x£©´æÔÚ¡°·Ö½çÏß¡±£¬·½³ÌΪ y=kx+
e |
2 |
e |
e |
2 |
e |
e |
ÔÙÀûÓõ¼ÊýÖ¤Ã÷g£¨x£©¡Ü
e |
e |
2 |
½â´ð£º½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ ¦Õ£¨x£©=a2 £¨x-1£©2 £¬ÖµÓòΪ[0£¬+¡Þ£©£® ¡£¨2·Ö£©
£¨2£©²»µÈʽ£¨x-1£©2£¾f£¨x£©µÄ½â¼¯ÖеÄÕûÊýÇ¡ÓÐ3¸ö£¬
µÈ¼ÛÓÚ£¨1-a2£© x2-2x+1£¾0 Ç¡ÓÐÈý¸öÕûÊý½â£¬¹Ê 1-a2£¼0£¬¼´ a£¾1£¬
¡à£¨1-a2£© x2-2x+1=[£¨£¨1-a£©x-1][£¨1+a£©x-1]£¾0£¬
ËùÒÔ
£¼x£¼
£¬ÓÖÒòΪ 0£¼
£¼1£¬
ËùÒÔ -3¡Ü
£¼-2£¬½âÖ®µÃ
¡Üa£¼
£® ¡£¨6·Ö£©
£¨3£©ÉèF£¨x£©=f£¨x£©-g£¨x£©=
x2-elnx£¬Ôò F¡ä£¨x£©=x-
=
£®
ËùÒÔµ± 0£¼x£¼
ʱ£¬F¡ä£¨x£©£¼0£»µ± x£¾
ʱ£¬F¡ä£¨x£©£¾0£®
Òò´Ë x=
ʱ£¬F£¨x£© È¡µÃ×îСֵ0£¬
Ôò f£¨x£©Óëg£¨x£©µÄͼÏóÔÚx=
´¦Óй«¹²µã £¨
£¬
£©£® ¡£¨8·Ö£©
Éèf£¨x£©Óëg£¨x£©´æÔÚ¡°·Ö½çÏß¡±£¬·½³ÌΪ y-
=k£¨x-
£©£¬¼´ y=kx+
-k
£¬
ÓÉ f£¨x£©¡Ýkx+
-k
£¬¶Ôx¡ÊRºã³ÉÁ¢£¬
Ôò x2-2kx-e+2k
¡Ý0 ÔÚx¡ÊRºã³ÉÁ¢£®
ËùÒÔ¡÷=4k2-4£¨2k
-e£©=4(k-
)2¡Ü0³ÉÁ¢£¬Òò´Ë k=
£®¡£¨10·Ö£©
ÏÂÃæÖ¤Ã÷ g£¨x£©¡Ü
x-
£¨x£¾0£©ºã³ÉÁ¢£®
ÉèG£¨x£©=elnx-x
+
£¬Ôò G¡ä£¨x£©=
-
=
£®
ËùÒÔµ± 0£¼x£¼
ʱ£¬G¡ä£¨x£©£¾0£»µ± x£¾
ʱ£¬G¡ä£¨x£©£¼0£®
Òò´Ë x=
ʱ£¬G£¨x£©È¡µÃ×î´óÖµ0£¬Ôò g£¨x£©¡Ü
x-
£¨x£¾0£©³ÉÁ¢£®
¹ÊËùÇó¡°·Ö½çÏß¡±·½³ÌΪ£ºy=
x-
£®¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡£¨14·Ö£©
£¨2£©²»µÈʽ£¨x-1£©2£¾f£¨x£©µÄ½â¼¯ÖеÄÕûÊýÇ¡ÓÐ3¸ö£¬
µÈ¼ÛÓÚ£¨1-a2£© x2-2x+1£¾0 Ç¡ÓÐÈý¸öÕûÊý½â£¬¹Ê 1-a2£¼0£¬¼´ a£¾1£¬
¡à£¨1-a2£© x2-2x+1=[£¨£¨1-a£©x-1][£¨1+a£©x-1]£¾0£¬
ËùÒÔ
1 |
1-a |
1 |
1+a |
1 |
1+a |
ËùÒÔ -3¡Ü
1 |
1+a |
4 |
3 |
3 |
2 |
£¨3£©ÉèF£¨x£©=f£¨x£©-g£¨x£©=
1 |
2 |
e |
x |
(x-
| ||||
x |
ËùÒÔµ± 0£¼x£¼
e |
e |
Òò´Ë x=
e |
Ôò f£¨x£©Óëg£¨x£©µÄͼÏóÔÚx=
e |
e |
e |
2 |
Éèf£¨x£©Óëg£¨x£©´æÔÚ¡°·Ö½çÏß¡±£¬·½³ÌΪ y-
e |
2 |
e |
e |
2 |
e |
ÓÉ f£¨x£©¡Ýkx+
e |
2 |
e |
Ôò x2-2kx-e+2k
e |
ËùÒÔ¡÷=4k2-4£¨2k
e |
e |
e |
ÏÂÃæÖ¤Ã÷ g£¨x£©¡Ü
e |
e |
2 |
ÉèG£¨x£©=elnx-x
e |
e |
2 |
e |
x |
e |
| ||||
x |
ËùÒÔµ± 0£¼x£¼
e |
e |
Òò´Ë x=
e |
e |
e |
2 |
¹ÊËùÇó¡°·Ö½çÏß¡±·½³ÌΪ£ºy=
e |
e |
2 |
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éƽÒÆ£¬ÖµÓò£¬½âÕûʽºÍ·Öʽ²»µÈʽ£¬ÇÐÏß·½³ÌµÄÇ󷨣¬µ¼Êý֪ʶÅжϵ¥µ÷ÐÔ¼°ÆäÓ¦Ó㬴æÔÚÐÔ£¬ÒÔ¼°Ì½Ë÷¡¢µÈ¼Ûת»¯ºÍÍÆÀíÖ¤Ã÷ÄÜÁ¦£¬½â¾ö×ÛºÏÎÊÌâµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿