题目内容
【题目】如图,三棱锥D-ABC中,,E,F分别为DB,AB的中点,且.
(1)求证:平面平面ABC;
(2)求二面角D-CE-F的余弦值.
【答案】(1)证明见解析;(2) .
【解析】
(1)取的中点,可得,,从而得到平面,得到,由,,得到,从而得到平面,所以平面平面;(2)以为原点,建立空间直角坐标系,利用余弦定理和勾股定理,得到,,得到的法向量,平面的法向量,根据向量夹角的余弦公式,得到二面角的余弦值
(1)如图取的中点,连接,,
因为,所以,
因为,所以,
又因为,所以平面,
平面
所以.
因为,分别为,的中点,所以.
因为,即,
则.
又因为,
所以平面,
又因为平面DAB,
所以平面平面.
(2)因为平面,则以为坐标原点,
过点与垂直的直线为轴,为轴,AD为轴,
建立如下图所示的空间直角坐标系.
因为,
在中,
,
所以.
在中,,
所以点,,
.
设平面的法向量为
.
所以,即,
可取.
设平面的法向量为
.
所以,即,
可取,
则
因为二面角为钝二面角,所以二面角的余弦值为.
【题目】受电视机在保修期内维修费等因素的影响,企业生产每台电视机的利润与该电视机首次出现故障的时间有关.某电视机制造厂生产甲、乙两种型号电视机,保修期均为2年,现从该厂已售出的两种型号电视机中各随机抽取50台,统计数据如下:
品牌 | 甲 | 乙 | |||
首次出现故障时间x(年) | |||||
电视机数量(台) | 3 | 5 | 42 | 8 | 42 |
每台利润(千元) | 1 | 2 | 3 | 1.8 | 2.8 |
将频率视为概率,解答下列问题:
(1)从该厂生产的甲种型号电视机中随机抽取一台,求首次出现故障发生在保修期内的概率;
(2)该厂预计今后这两种型号电视机销量相当,由于资金限制,只能生产其中一种型号电视机,若从经济效益的角度考虑,你认为应该产生哪种型号电视机?说明理由.
【题目】一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了该种药用昆虫的6组观测数据如下表:
温度x/℃ | 21 | 23 | 24 | 27 | 29 | 32 |
产卵数y/个 | 6 | 11 | 20 | 27 | 57 | 77 |
经计算得:
,,线性回归模型的残差平方和,,
其中分别为观测数据中的温度和产卵数,
(1)若用线性回归模型,求y关于x的回归方程(精确到0.1);
(2)若用非线性回归模型求得y关于x的回归方程为,且相关指数.
①试与1中的回归模型相比,用说明哪种模型的拟合效果更好.
②用拟合效果好的模型预测温度为35℃时该用哪种药用昆虫的产卵数(结果取整数)
附:一组数据其回归直线的斜率和截距的最小二乘估计为,;相关指数.