题目内容
【题目】[选修4-5:不等式选讲]
设函数f(x)=|x+ |+|x﹣2m|(m>0).
(1)求证:f(x)≥8恒成立;
(2)求使得不等式f(1)>10成立的实数m的取值范围.
【答案】
(1)证明:函数f(x)=|x+ |+|x﹣2m|(m>0),
∴f(x)=|x+ |+|x﹣2m|≥|x+ ﹣(x﹣2m)|=| +2m|= +2m≥2 =8,
当且仅当m=2时,取等号,故f(x)≥8恒成立.
(2)证明:f(1)=|1+ |+|1﹣2m|,当m> 时,f(1)=1+ ﹣(1﹣2m),不等式即 +2m>10,
化简为m2﹣5m+4>0,求得m<1,或m>4,故此时m的范围为( ,1)∪(4,+∞).
当0<m≤ 时,f(1)=1+ +(1﹣2m)=2+ ﹣2m关于变量m单调递减,
故当m= 时,f(1)取得最小值为17,
故不等式f(1)>10恒成立.
综上可得,m的范围为(0,1)∪(4,+∞).
【解析】(1)利用绝对值三角不等式、基本不等式证得f(x)≥8恒成立.(2)当m> 时,不等式即 +2m>10,即m2﹣5m+4>0,求得m的范围.当0<m≤ 时,f(1)=1+ +(1﹣2m)=2+ ﹣2m关于变量m单调递减,求得f(1)的最小值为17,可得不等式f(1)>10恒成立.综合可得m的范围.
【考点精析】解答此题的关键在于理解绝对值不等式的解法的相关知识,掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号.
【题目】2016世界特色魅力城市200强新鲜出炉,包括黄山市在内的28个中国城市入选.美丽的黄山风景和人文景观迎来众多宾客.现在很多人喜欢自助游,某调查机构为了了解“自助游”是否与性别有关,在黄山旅游节期间,随机抽取了100人,得如下所示的列联表:
赞成“自助游” | 不赞成“自助游” | 合计 | |
男性 | 30 | ||
女性 | 10 | ||
合计 | 100 |
(1)若在100这人中,按性别分层抽取一个容量为20的样本,女性应抽11人,请将上面的列联表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料能否在犯错误的概率不超过0.05前提下,认为赞成“自助游”是与性别有关系?
(2)若以抽取样本的频率为概率,从旅游节游客中随机抽取3人赠送精美纪念品,记这3人中赞成“自助游”人数为X,求X的分布列和数学期望. 附:K2=
P(K2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 6.635 | 10.828 |