题目内容
已知向量
=(sinx,-1),
=(
cosx,-
),函数f(x)=
2+
•
-2.
(1)若x∈(
,
),求f(x)的值域;
(2)已知a、b、c分别为△ABC内角A、B、C的对边,且a,b,c成等比数列,角B为锐角,且f(B)=1,求
+
的值.
m |
n |
3 |
1 |
2 |
m |
m |
n |
(1)若x∈(
π |
6 |
π |
2 |
(2)已知a、b、c分别为△ABC内角A、B、C的对边,且a,b,c成等比数列,角B为锐角,且f(B)=1,求
1 |
tanA |
1 |
tanC |
分析:(1)由数量积的运算化简已知式子,结合角x的范围和三角函数的性质可得;
(2)由(1)可知f(B)=sin(2B-
)=1,进而可得B=
,再由等比数列可得b2=ac,结合正弦定理得sin2B=sinAsinC,代入要求的式子由三角函数的知识化简可得.
(2)由(1)可知f(B)=sin(2B-
π |
6 |
π |
3 |
解答:解:(1)由题意可得f(x)=(
+
)•
-2
=sin2x+1+
sinxcosx+
-2
=
+
sin2x-
=
sin2x-
cos2x=sin(2x-
).
∵x∈(
,
),∴2x-
∈(
,
),
∴f(x)∈(
,1].
(2)由(1)可知f(B)=sin(2B-
)=1,
∵0<B<
,∴-
<2B-
<
,
∴2B-
=
,B=
.
又∴a,b,c成等比数列,∴b2=ac
由正弦定理得sin2B=sinAsinC,
∴
+
=
+
=
=
=
=
.
m |
n |
m |
=sin2x+1+
3 |
1 |
2 |
=
1-cos2x |
2 |
| ||
2 |
1 |
2 |
| ||
2 |
1 |
2 |
π |
6 |
∵x∈(
π |
6 |
π |
2 |
π |
6 |
π |
6 |
5π |
6 |
∴f(x)∈(
1 |
2 |
(2)由(1)可知f(B)=sin(2B-
π |
6 |
∵0<B<
π |
2 |
π |
6 |
π |
6 |
5π |
6 |
∴2B-
π |
6 |
π |
2 |
π |
3 |
又∴a,b,c成等比数列,∴b2=ac
由正弦定理得sin2B=sinAsinC,
∴
1 |
tanA |
1 |
tanC |
cosA |
sinA |
cosC |
sinC |
sinCcosA+cosCsinA |
sinAsinC |
sin(A+C) |
sin2B |
1 |
sinB |
2
| ||
3 |
点评:本题考查平面向量数量积的运算,涉及三角函数的化简和正弦定理的应用,属中档题.
练习册系列答案
相关题目