题目内容
过△ABC所在平面外一点P,作PO⊥,垂足为O,连接PA、PB、PC且PA、PB、PC两两垂直,则点O是△ABC的( )
A.内心 B.外心 C.垂心 D.垂心
A.内心 B.外心 C.垂心 D.垂心
B
分析:点P为△ABC所在平面外一点,PO⊥α,垂足为O,若PA=PB=PC,可证得△POA≌△POB≌△POC,从而证得OA=OB=OC,符合这一性质的点O是△ABC外心.
证明:点P为△ABC所在平面外一点,PO⊥α,垂足为O,若PA=PB=PC,
故△POA,△POB,△POC都是直角三角形
∵PO是公共边,PA=PB=PC
∴△POA≌△POB≌△POC
∴OA=OB=OC
故O是△ABC外心
故答案为:B.
练习册系列答案
相关题目