题目内容
3.若a>b>0,且a+b=6$\sqrt{ab}$,则$\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}$=$\sqrt{2}$.分析 a>b>0,且a+b=6$\sqrt{ab}$,化为$\frac{\sqrt{a}}{\sqrt{b}}+\frac{\sqrt{b}}{\sqrt{a}}$=6,令$\frac{\sqrt{a}}{\sqrt{b}}$=x>1,化为x+$\frac{1}{x}$=6,解得x=3+2$\sqrt{2}$.化为$\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}$=$\frac{\frac{\sqrt{a}}{\sqrt{b}}+1}{\frac{\sqrt{a}}{\sqrt{b}}-1}$=$\frac{x+1}{x-1}$,代入即可得出.
解答 解:∵a>b>0,且a+b=6$\sqrt{ab}$,
∴$\frac{\sqrt{a}}{\sqrt{b}}+\frac{\sqrt{b}}{\sqrt{a}}$=6,
令$\frac{\sqrt{a}}{\sqrt{b}}$=x>1,化为x+$\frac{1}{x}$=6,化为x2-6x+1=0,
∴$x=\frac{6±4\sqrt{2}}{2}$=3$±2\sqrt{2}$,取x=3+2$\sqrt{2}$.
∴$\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}$=$\frac{\frac{\sqrt{a}}{\sqrt{b}}+1}{\frac{\sqrt{a}}{\sqrt{b}}-1}$=$\frac{x+1}{x-1}$=$\frac{4+2\sqrt{2}}{2+2\sqrt{2}}$=$\frac{2+\sqrt{2}}{1+\sqrt{2}}$=$\frac{(2+\sqrt{2})(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)}$=$\sqrt{2}$.
故答案为:$\sqrt{2}$.
点评 本题考查了乘法公式的应用、根式的运算性质、“换元法”、一元二次方程的解法,考查了推理能力与计算能力,属于中档题.
A. | 0 | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | -$\frac{1}{4}$ |
A. | ${C}_{4}^{3}$ | B. | ${P}_{4}^{3}$ | C. | ${4}_{\;}^{3}$ | D. | 34 |